Python解决八皇后问题

八皇后问题详解与Python实现
本文详细介绍了经典的八皇后问题及其推广至n皇后问题,探讨了从1848年至今数学家们的多种求解方法,包括使用行列式及递归算法。文章提供了Python代码实现,展示了如何在8x8的棋盘上放置八个皇后,确保任两皇后不处于同一行、列或斜线。

    八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n1×n1,而皇后个数也变成n2。而且仅当 n2 = 1 或 n1 ≥ 4 时问题有解。

八皇后问题最早是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出。之后陆续有数学家对其进行研究,其中包括高斯和康托,并且将其推广为更一般的n皇后摆放问题。八皇后问题的第一个解是在1850年由弗朗兹·诺克给出的。诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。1874年,S.冈德尔提出了一个通过行列式来求解的方法,这个方法后来又被J.W.L.格莱舍加以改进。

艾兹格·迪杰斯特拉在1972年用这个问题为例来说明他所谓结构性编程的能力。

八皇后问题出现在1990年代初期的著名电子游戏第七访客中。

下面是测试代码:

#!/usr/bin/env python
# _*_  coding:utf-8 _*_
#* queen problem with recurison
BOARD_SIZE = 8

def under_attack(col, queens):
   left = right = col
   for r, c in reversed(queens):
       #左右有冲突的位置的列号
       left, right = left - 1, right + 1

       if c in (left, col, right):
           return True
   return False

def solve(n):
   if n == 0:
       return [[]]

   smaller_solutions = solve(n - 1)

   return [solution+[(n,i+1)]
       for i in xrange(BOARD_SIZE)
           for solution in smaller_solutions
               if not under_attack(i+1, solution)]
for answer in solve(BOARD_SIZE):
   print answer

 

转载于:https://my.oschina.net/665544/blog/2221380

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值