hdu1159

本文介绍了一个经典的计算机科学问题——最长公共子序列问题,并提供了一种基于动态规划的高效解决方案。通过递推公式,文章详细阐述了如何计算两个字符串的最长公共子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 43355    Accepted Submission(s): 20013


Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
 

 

Sample Input
abcfbc abfcab
programming contest
abcd mnp
 
Sample Output
4
2
0
 
分析:动态规划。c[i][j]记录"x0,x1, ...,xn-2"与"y0, y1, ..., yn-2"的最长公共子序列的长度,
递推公式如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char a[2000],b[2000];
int dp[1000][1000];
int main()
{
    while(scanf("%s%s",a,b)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        int N=strlen(a),M=strlen(b);
        for(int i=0;i<N;i++)
        {
            for(int j=0;j<M;j++)
            if(a[i]==b[j]) dp[i+1][j+1]=dp[i][j]+1;
            else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
        }
        printf("%d\n",dp[N][M]);
    }
    return 0;
}
View Code

 

 

转载于:https://www.cnblogs.com/ACRykl/p/8298143.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值