【POJ1195】Mobile phones

本文详细介绍了如何使用二维线段树解决矩形区域内的手机数量统计问题,包括数据结构的设计、构建过程、更新操作及查询操作的具体实现。
Mobile phones
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 21905 Accepted: 10188

Description

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The squares form an S * S matrix with the rows and columns numbered from 0 to S-1. Each square contains a base station. The number of active mobile phones inside a square can change because a phone is moved from a square to another or a phone is switched on or off. At times, each base station reports the change in the number of active phones to the main base station along with the row and the column of the matrix.

Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area.

Input

The input is read from standard input as integers and the answers to the queries are written to standard output as integers. The input is encoded as follows. Each input comes on a separate line, and consists of one instruction integer and a number of parameter integers according to the following table.

The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and 0 <= Y <= 3.

Table size: 1 * 1 <= S * S <= 1024 * 1024
Cell value V at any time: 0 <= V <= 32767
Update amount: -32768 <= A <= 32767
No of instructions in input: 3 <= U <= 60002
Maximum number of phones in the whole table: M= 2^30

Output

Your program should not answer anything to lines with an instruction other than 2. If the instruction is 2, then your program is expected to answer the query by writing the answer as a single line containing a single integer to standard output.

Sample Input

0 4
1 1 2 3
2 0 0 2 2 
1 1 1 2
1 1 2 -1
2 1 1 2 3 
3

Sample Output

3
4

Source

[Submit]   [Go Back]   [Status]   [Discuss]

Home Page   Go Back  To top

Solution:

线段树套线段树,第一次写……

反正我这次写的与常规线段树不一样,外围X线段树表示[l,r]内,内层Y线段树表示内层和。

更新是从上往下的而不是从下往上的,虽然据某fyj同学说可以从下往上维护,但是方法不明。

https://blog.youkuaiyun.com/zzkksunboy/article/details/70215755 ←这一篇讲的特别好,先安利一下。

重新说说这里吧,也为以后的自己打个基础。

实际上,我们首先用外围的线段树维护[x1,x2],而且在每一个线段树的点上建一个线段树,这颗线段树用来维护在[x1,x2]区间内的[y1,y2]的值。

这样的话,我们修改就对每一个走过的地方修改一下,查询就慢慢往下走了……

我算是发现了,似乎线段树上每个点并不需要储存l,r信息(这点存疑,至少我目前遇到的所有题目都可以不储存)。

二维线段树我觉得不好理解,就没学,相比之下树套树反而显得很优美。

/*In Search Of Life*/
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<iomanip>
#include<stack>
#include<map>
#include<set>
#include<cmath>
#define debug(x) cerr<<#x<<"="<<x<<endl
#define INF 0x7f7f7f7f
#define llINF 0x7fffffffffffll
using namespace std;
typedef pair<int,int> pii;
typedef long long ll;
inline int init()
{
    int now=0,ju=1;char c;bool flag=false;
    while(1)
    {
        c=getchar();
        if(c=='-')ju=-1;
        else if(c>='0'&&c<='9')
        {
            now=now*10+c-'0';
            flag=true;
        }
        else if(flag)return now*ju;
    }
}
inline long long llinit()
{
    long long now=0,ju=1;char c;bool flag=false;
    while(1)
    {
        c=getchar();
        if(c=='-')ju=-1;
        else if(c>='0'&&c<='9')
        {
            now=now*10+c-'0';
            flag=true;
        }
        else if(flag)return now*ju;
    }
}
#define lson (now<<1)
#define rson (now<<1|1)
#define mid ((l+r)>>1)
int sz,v,n; 
struct NodeX
{
    int rooty;
}treeX[5005];
struct NodeY
{
    int lch,rch;
    int sum;
}treeY[5000005];
void Build_Tree_Y(int &now,int l,int r)
{
    now=++sz;
    if(l==r)return;
    else
    {
        Build_Tree_Y(treeY[now].lch,l,mid);
        Build_Tree_Y(treeY[now].rch,mid+1,r);
        treeY[now].sum=treeY[treeY[now].lch].sum+treeY[treeY[now].rch].sum;
    }
}
void Build_Tree_X(int now,int l,int r)
{
    Build_Tree_Y(treeX[now].rooty,1,n);
    if(l==r)return;
    else
    {
        Build_Tree_X(lson,l,mid);
        Build_Tree_X(rson,mid+1,r);
        return;
    }
}
void Modify_Tree_Y(int now,int l,int r,int y)
{
    treeY[now].sum+=v;
    if(l==r)return;
    else
    {
        if(y<=mid)Modify_Tree_Y(treeY[now].lch,l,mid,y);
        else Modify_Tree_Y(treeY[now].rch,mid+1,r,y);
    }
} 
void Modify_Tree_X(int now,int l,int r,int x,int y)
{
    Modify_Tree_Y(treeX[now].rooty,1,n,y);
    if(l==r)return;
    else
    {
        if(x<=mid)Modify_Tree_X(lson,l,mid,x,y);
        else if(x>mid)Modify_Tree_X(rson,mid+1,r,x,y);
    }
}
int Query_Tree_Y(int now,int l,int r,int y1,int y2)
{
    if(l==y1&&r==y2)
    {
        return treeY[now].sum;
    }
    else 
    {
        if(y2<=mid)return Query_Tree_Y(treeY[now].lch,l,mid,y1,y2);
        else if(y1>mid)return Query_Tree_Y(treeY[now].rch,mid+1,r,y1,y2);
        else return Query_Tree_Y(treeY[now].lch,l,mid,y1,mid)+Query_Tree_Y(treeY[now].rch,mid+1,r,mid+1,y2);
    }
}
int Query_Tree_X(int now,int l,int r,int x1,int x2,int y1,int y2)
{
    if(l==x1&&r==x2)
    {
        return Query_Tree_Y(treeX[now].rooty,1,n,y1,y2);
    }
    else 
    {
        if(x2<=mid)return Query_Tree_X(lson,l,mid,x1,x2,y1,y2);
        else if(x1>mid)return Query_Tree_X(rson,mid+1,r,x1,x2,y1,y2);
        else return Query_Tree_X(lson,l,mid,x1,mid,y1,y2)+Query_Tree_X(rson,mid+1,r,mid+1,x2,y1,y2);
    }
}
int t,a,b,c,d;
int main()
{
    while(t=init(),t!=3)
    {
        if(t==0)n=init(),Build_Tree_X(1,1,n);
        else if(t==1)
        {
            a=init();b=init();v=init();
            a++;b++;
            Modify_Tree_X(1,1,n,a,b);
        }
        else if(t==2)
        {
            a=init();b=init();c=init();d=init();
            a++;b++;c++;d++; 
            printf("%d\n",Query_Tree_X(1,1,n,a,c,b,d));
        }
    }
    return 0;
}
View Code

复杂度分析:

空间复杂度:外层线段树总共$O(n log{n})$,对于每一个外部点内部对应一颗线段树同样也是$O(n log{n})$,总复杂度$O(n^2log^2{n})$。

时间复杂度:外层查询每次$O(log{n})$,内层查询每次$O(log{n})$,总复杂度$O(nlog^2{n})$。

基本就这样……

转载于:https://www.cnblogs.com/redwind/p/9385362.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值