YOLO(You Only Look Once):Real-Time Object Detection

Caffe-YOLO实现
本文介绍了一个基于Caffe框架的YOLO实时目标检测系统的实现方法。该项目支持YOLOv1,并通过四个步骤将Darknet预训练权重转换为Caffe模型。首先从Darknet的配置文件创建Caffe的prototxt文件,初始化Caffe网络和权重,读取Darknet的预训练权重文件,并用这些权重替换Caffe中初始化的权重。

caffe-yolo:https://github.com/xingwangsfu/caffe-yolo

YOLO in caffe

Update 12-05-2016: Currently, only yolo v1 (http://pjreddie.com/darknet/yolov1/) is supported. Yolo V2 (http://pjreddie.com/darknet/yolo/) is not supported. Batch norm layer is supported.

Introduction

This is a caffe implementation of the YOLO:Real-Time Object Detection

Note, the caffe models are not trained in caffe, but converted from darknet's (.weight) files (http://pjreddie.com/darknet/yolov1/).

The converter is consisted of four steps:

  • create .prototxt files for caffe from .cfg file in darkent
  • initialize the caffe network and weights from .prototxt file
  • read the weights from pre-trained darknet's (.weight) file
  • replace the initialized weights with the weights in pre-trained darkenet's (.weight) file

Usage

  • run "create_yolo_prototxt.py" to create .prototxt files
  • run "create_yolo_caffemodel.py" to create .caffemodel files
  • run "yolo_main.py" to call yolo in caffe

Convert yolo's (.weight) files to caffemodel

  • first, you need to download the pretrained yolo weight files (http://pjreddie.com/darknet/yolov1/) and .cfg files (https://github.com/pjreddie/darknet/tree/master/cfg/yolov1)

  • run create_yolo_prototxt.py to create .prototxt files

  • after that, run create_yolo_caffemodel.py to create the caffemodel from yolo's (.weight) files

    • "python create_yolo_caffemodel.py -m train_val_prototxt.filename -w yoloweights_filename -o caffemodel_filename"

    replace train_val_prototxt.filename with /your/path/to/yolo_train_val.prototxt (yolo_small, yolo_tiny), yoloweights_filename with /your/path/to/yolo.weights (yolo-small, yolo-tiny), and caffemodel_filename with your output caffemodel name,

    e.g. "python create_yolo_caffemodel.py -m yolo_train_val.prototxt -w yolo.weights -o yolo.caffemodel"

Main file usage

run yolo_main.py to do yolo object detection for the input image

  • "python yolo_main.py -m model_filename -w weight_filename -i image_filename"

replace model_filename with /your/path/to/yolo_small_deploy.prototxt or yolo_tiny_deploy.prototxt, weight_filename with /your/path/to/yolo_tiny.caffemodel or yolo_small.caffemodel and image_filename with the target image file

Requirements

  • Caffe, pycaffe

  • Opencv2

Copyrights

According to the LICENSE file of the original code,

  • Me and original author hold no liability for any damages

  • Do not use this on commercial!

转载于:https://www.cnblogs.com/ystwyfe/p/7942953.html

### YOLOv10 实时端到端目标检测概述 YOLO (You Only Look Once) 是一种著名的单阶段目标检测算法,以其高效性和快速推理能力而闻名。随着版本迭代,YOLO 的性能不断提升,在速度和精度之间达到了良好的平衡。以下是关于 YOLOv10 实现及其特点的详细介绍: #### 1. **YOLOv10 架构设计** YOLOv10 建立在其前代模型的基础上,进一步优化了网络结构以提高效率和准确性。它采用了更深层次的卷积神经网络(CNN)作为骨干特征提取器,并通过引入注意力机制来增强对复杂场景的理解能力[^3]。 - 骨干网络通常采用 EfficientNet 或 CSPDarknet 等轻量化架构,从而减少计算量并提升运行速度。 - 使用多尺度预测技术,允许模型在同一张图片上同时处理不同大小的对象。 ```python import torch from yolov10 import YOLOv10 model = YOLOv10(pretrained=True) input_tensor = torch.randn(1, 3, 640, 640) # 输入尺寸为 640x640 predictions = model(input_tensor) print(predictions.shape) # 输出形状取决于配置文件设置 ``` #### 2. **实时性与端到端特性** 为了实现真正的实时目标检测,YOLOv10 利用了 GPU 加速以及高效的内存管理策略。相比于传统的两阶段方法(如 Faster R-CNN),YOLOv10 不依赖于区域提议网络(RPN),而是直接从全图中一次性完成分类和回归任务。 此外,借助 Structured Streaming 技术可以构建声明式的 API 来支持流数据上的操作,这使得大规模在线视频分析成为可能[^2]。 #### 3. **优势总结** - 单次推断即可获得最终结果,显著降低了延迟时间; - 对小型物体具有较强的鲁棒性; - 支持多种硬件平台部署,包括嵌入式设备和云端服务器; 尽管如此,需要注意的是当前讨论的内容融合了一些假设性的改进方向和技术趋势,并非完全基于已发布的具体资料[YOUR REFERENCE HERE IF APPLICABLE]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值