P2919 [USACO08NOV]守护农场Guarding the Farm
题目描述
The farm has many hills upon which Farmer John would like to place guards to ensure the safety of his valuable milk-cows.
He wonders how many guards he will need if he wishes to put one on top of each hill. He has a map supplied as a matrix of integers; the matrix has N (1 < N <= 700) rows and M (1 < M <= 700) columns. Each member of the matrix is an altitude H_ij (0 <= H_ij <= 10,000). Help him determine the number of hilltops on the map.
A hilltop is one or more adjacent matrix elements of the same value surrounded exclusively by either the edge of the map or elements with a lower (smaller) altitude. Two different elements are adjacent if the magnitude of difference in their X coordinates is no greater than 1 and the magnitude of differences in their Y coordinates is also no greater than 1.
农场里有许多山丘,在山丘上约翰要设置哨岗来保卫他的价值连城的奶牛.
约翰不知道有多少山丘,也就不知道要设置多少哨岗.他有一张地图,用整数矩阵的方式描 述了农场N(1 <= N<=700)行M(1 < M<=700)列块土地的海拔高度好 H_ij (0 <= H_ij <= 10,000).请帮他 计算山丘的数量.
一个山丘是指某一个方格,与之相邻的方格的海拔高度均严格小于它.当然,与它相邻的方 格可以是上下左右的那四个,也可以是对角线上相邻的四个.
输入输出格式
输入格式:
-
Line 1: Two space-separated integers: N and M
- Lines 2..N+1: Line i+1 describes row i of the matrix with M
space-separated integers: H_ij
输出格式:
- Line 1: A single integer that specifies the number of hilltops
输入输出样例
8 7 4 3 2 2 1 0 1 3 3 3 2 1 0 1 2 2 2 2 1 0 0 2 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 2 2 1 1 0 0 1 1 1 2 1 0
3
说明
There are three peaks: The one with height 4 on the left top, one of the points with height 2 at the bottom part, and one of the points with height 1 on the right top corner.
贪心+dfs
我们知道山峰为中间高四周低的地方,这样我们寻找一下有没有这样的区域使中间高。我们可以存一下比较高的区域,然后判断每一个高的区域是否已经属于另一座山峰,如果不是,则说明这个地即为下一个山峰的最高点,然后从这个点进行dfs,遍历它周围可以与她组成一个山峰的地方,我们知道这样的地方的高度一定比他低
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define N 1100 using namespace std; bool vis[N][N]; int n,m,x,y,h[N][N],ans,sum; int xx[8]={0,0,-1,-1,-1,1,1,1},yy[8]={1,-1,1,0,-1,1,0,-1}; int read() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();} return x*f; } struct Node { int x,y,h; }node[N*N]; int cmp(Node a,Node b) { return a.h>b.h; } void dfs(int x,int y) { for(int i=0;i<8;i++) { int fx=x+xx[i],fy=y+yy[i]; if(fx<1||fy<1||fx>n||fy>m) continue; if(h[fx][fy]<=h[x][y]&&!vis[fx][fy]) { vis[fx][fy]=true; dfs(fx,fy); } } return ; } int main() { n=read(),m=read(); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) { h[i][j]=read(); node[++sum].x=i; node[sum].y=j; node[sum].h=h[i][j]; } sort(node+1,node+1+sum,cmp); for(int i=1;i<=sum;i++) { x=node[i].x,y=node[i].y; if(vis[x][y]) continue; vis[x][y]=true; ans++; dfs(x,y); } printf("%d",ans); return 0; }