poj3041(最小顶点覆盖)

本文介绍了一种解决N*N矩阵中陨石消除问题的算法。通过构建二分图并运用匈牙利算法寻找最小覆盖,即求解最大匹配,来确定最少的操作次数以消除所有陨石。

链接:点击打开链接

题意:N*N的矩阵中有一些点代表陨石。每次仅仅能消灭一行或一列连,问须要多少次才干所有消灭

代码:

#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int s[505][505];
int fa[505],vis[505];
int dfs(int S){
    int i;
    for(i=1;i<=n;i++){
        if(vis[i]==0&&s[S][i]){
            vis[i]=1;
            if(fa[i]==-1||dfs(fa[i])){
                fa[i]=S;
                return 1;
            }
        }
    }
    return 0;
}
int main(){
    int i,j,u,v,ans;
    while(scanf("%d%d",&n,&m)!=EOF){
        memset(s,0,sizeof(s));
        for(i=1;i<=m;i++){                      //把行和列都变成二分图左右的点
            scanf("%d%d",&u,&v);                //将有陨石的行和列相连。那么问题
            s[u][v]=1;                          //就变为最少选哪几个点使得全部的
        }                                       //边可以都被覆盖。则就是最小覆盖
        ans=0;                                  //最小覆盖=最大匹配,直接匈牙利
        memset(fa,-1,sizeof(fa));
        for(i=1;i<=n;i++){
            memset(vis,0,sizeof(vis));
            if(dfs(i))
            ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}

### 关于二分图最小顶点覆盖的算法实现 #### 1. 最小顶点覆盖的概念 最小顶点覆盖是指在一个二分图中选取尽可能少的节点,使得这些节点能够覆盖所有的边。换句话说,对于每一条边 (u, v),至少有一个端点 u 或 v 被选入覆盖集中。 根据 König 定理,在任意无向二分图中,最小顶点覆盖的数量等于该图的最大匹配数量[^1]。 --- #### 2. 算法原理 为了求解二分图的最小顶点覆盖,通常采用 **匈牙利算法** 来计算最大匹配数。具体过程如下: - 构建一个二分图 G(X,Y,E),其中 X 和 Y 是两个互不相交的节点集合,E 表示连接它们的边。 - 使用匈牙利算法找到二分图的最大匹配 M。 - 基于最大匹配的结果,通过以下方式构造最小顶点覆盖: - 将左侧未被匹配的节点加入到覆盖集中; - 对右侧已被匹配的节点也加入到覆盖集中。 最终得到的覆盖集大小即为最小顶点覆盖的数量[^2]。 --- #### 3. 实现代码 以下是基于 Python 的实现代码,利用匈牙利算法完成二分图最小顶点覆盖的计算: ```python from collections import defaultdict def hungarian_algorithm(graph, n, m): """ 匈牙利算法用于寻找二分图的最大匹配 :param graph: 邻接表表示的二分图 {X -> [Y]} :param n: 左侧节点数目 :param m: 右侧节点数目 :return: 最大匹配结果 """ match_y = [-1] * m # 记录右侧节点对应的匹配关系 visited = None # 当前轮次访问标记 def dfs(u): for v in graph[u]: if not visited[v]: visited[v] = True if match_y[v] == -1 or dfs(match_y[v]): match_y[v] = u return True return False matching_count = 0 for i in range(n): visited = [False] * m if dfs(i): matching_count += 1 return matching_count, match_y def min_vertex_cover(graph, n, m): """ 求解二分图的最小顶点覆盖 :param graph: 邻接表表示的二分图 {X -> [Y]} :param n: 左侧节点数目 :param m: 右侧节点数目 :return: 最小顶点覆盖集合 """ max_matching, match_y = hungarian_algorithm(graph, n, m) cover_x = set() # 左侧需要覆盖的节点 cover_y = set() # 右侧需要覆盖的节点 unmatched_in_x = set(range(n)) # 初始认为所有左侧节点都未匹配 matched_in_y = set() for y in range(m): # 找出右侧已匹配的节点 if match_y[y] != -1: unmatched_in_x.discard(match_y[y]) # 如果某个左侧节点参与了匹配,则移除 matched_in_y.add(y) cover_x.update(unmatched_in_x) # 添加左侧未匹配的节点 cover_y.update(set(range(m)) - matched_in_y) # 添加右侧未匹配的节点 return list(cover_x), list(cover_y) # 测试用例 if __name__ == "__main__": # 输入邻接表形式的二分图 graph = { 0: [0, 1], 1: [0, 2], 2: [1, 3] } n = 3 # 左侧节点数 m = 4 # 右侧节点数 result_x, result_y = min_vertex_cover(graph, n, m) print(f"左侧需覆盖的节点: {result_x}") print(f"右侧需覆盖的节点: {result_y}") ``` 上述代码实现了二分图的最小顶点覆盖功能,核心部分依赖匈牙利算法来获取最大匹配,并据此推导出覆盖所需的节点集合[^3]。 --- #### 4. 应用实例 考虑 POJ 3041 Asteroids 这道题目,其本质是一个二分图最小顶点覆盖问题。给定一组障碍物坐标,将其转化为二分图模型后,可以通过以上方法高效解决。最终输出的是满足条件的最小射击次数[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值