POJ 2955 Brackets

本文探讨了如何通过动态规划解决寻找给定字符序列中包含的最长合法括号子序列的问题,详细解释了算法原理并提供了代码实现。

传送门@百度

Brackets
Time Limit: 1000MS Memory Limit: 65536K
   

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

继续刷水,和上一题差不多,dp[i][j]=max(dp[i+1][j-1]+1//i,j匹配,dp[i][k]+dp[k+1][j]);

 1 #include<set>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<cstring>
 5 #include<iostream>
 6 #include<algorithm>
 7 using namespace std;
 8 const int N = 110;
 9 #define For(i,n) for(int i=1;i<=n;i++)
10 #define Rep(i,l,r) for(int i=l;i<=r;i++)
11 #define Down(i,r,l) for(int i=r;i>=l;i--)
12 
13 char s[N];
14 int dp[N][N],n;
15 //dp[i][j]=max{dp[i+1][j-1]+1,dp[i][k]+dp[k+1][j]}
16 
17 bool match(char A,char B){
18     if(A=='(') return (B==')');
19     if(A=='[') return (B==']');
20     return false;
21 }
22 
23 void DP(){
24     memset(dp,0,sizeof(dp));
25     n=strlen(s+1);
26     Down(i,n-1,1)
27       Rep(j,i+1,n){
28           if(match(s[i],s[j])) dp[i][j]=dp[i+1][j-1]+1;
29           Rep(k,i,j-1)
30             dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
31       }
32     cout<<dp[1][n]*2<<endl;
33 }
34 
35 int main(){
36     while(scanf("%s",s+1),strcmp(s+1,"end")){
37         DP();
38     }
39     return 0;
40 }
Codes

 

转载于:https://www.cnblogs.com/zjdx1998/p/4049158.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值