- Hinge Loss 解释
SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$ 损失,
\[L(Y,P(Y|X)) = - \log P(Y|X)\]
从二项分布的角度来考虑 Logistic 回归:
\begin{aligned}
P(Y=1|X) &= \frac{1}{1 + e^{- \theta x}}\\
P(Y=0|X) &= 1- P(Y=1|X)
\end{aligned}
这里另 $z = \theta^Tx$ , $\delta$ 为 sigmod 映射,则: <