题目描述
我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。
给定N和S,计算不大于N的幸运数个数。
输入
输入的第一行包含整数N。
接下来一行一个整数M,表示S中元素的数量。
接下来M行,每行一个数字串,表示S中的一个元素。
输出
输出一行一个整数,表示答案模109+7的值。
样例输入
3
2
3
14
样例输出
提示
下表中l表示N的长度,L表示S中所有串长度之和。
1 < =l < =1200 , 1 < =M < =100 ,1 < =L < =1500
这道题和bzoj1030比较像,建议先做一下那道题。虽然是一道AC自动机的题但重点是dp,因为不只有位数限制,每一位还有限制数值,所以不能只用f[i][j]表示第i位走到了j节点。因为有限制值所以我们不妨在前面再加一维变成f[k][i][j](k=0或k=1),f[0][i][j]表示第i为走到j节点需要受限制(即前几位都等于每一位限制值),f1[1][i][j]则表示第i位走到j节点不受限制(即前几位有至少一位低于限制值)。当枚举f[0][i][j]时如果j节点所代表的数字小于第i位的限制值,那就可以转移到f[1][i+1][x](x为j的子节点).对于f[0][i][j],因为这一位受限制,所以下一位也要相应受限制,即f[0][i][j]转移到f[0][i+1][x].对于f[1][i][j],因为这一位不受限制,下一位一定不受限制,所以从f[1][i][j]转移到f[1][i+1][x]。
最后附上代码。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
struct tree
{
int fail;
int vis[11];
int end;
}a[1600];
char s[1600];
char t[1250];
int cnt;
int n;
int m;
long long ans;
long long f[3][1250][1600];
int mod=1e9+7;
void build(char *s)
{
int l=strlen(s);
int now=0;
for(int i=0;i<l;i++)
{
int x=s[i]-'0';
if(!a[now].vis[x])
{
a[now].vis[x]=++cnt;
}
now=a[now].vis[x];
}
a[now].end++;
}
void getfail()
{
queue<int>q;
for(int i=0;i<10;i++)
{
if(a[0].vis[i]!=0)
{
a[a[0].vis[i]].fail=0;
q.push(a[0].vis[i]);
}
}
while(!q.empty())
{
int now=q.front();
q.pop();
for(int i=0;i<10;i++)
{
if(!a[now].vis[i])
{
a[now].vis[i]=a[a[now].fail].vis[i];
continue;
}
a[a[now].vis[i]].fail=a[a[now].fail].vis[i];
a[a[now].vis[i]].end|=a[a[a[now].fail].vis[i]].end;
q.push(a[now].vis[i]);
}
}
}
int main()
{
scanf("%s",t+1);
m=strlen(t+1);
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",s);
build(s);
}
getfail();
for(int i=0;i<m;i++)
{
for(int j=0;j<=cnt;j++)
{
if(!j)
{
if(!i)
{
int x=t[i+1]-'0';
for(int k=1;k<x;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=1;
f[1][i+1][a[j].vis[k]]%=mod;
}
}
if(!a[a[j].vis[x]].end)
{
f[0][i+1][a[j].vis[x]]+=1;
f[0][i+1][a[j].vis[x]]%=mod;
}
}
else
{
for(int k=1;k<=9;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=1;
f[1][i+1][a[j].vis[k]]%=mod;
}
}
}
}
if(f[0][i][j])
{
int x=t[i+1]-'0';
for(int k=0;k<x;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=f[0][i][j];
f[1][i+1][a[j].vis[k]]%=mod;
}
}
if(!a[a[j].vis[x]].end)
{
f[0][i+1][a[j].vis[x]]+=f[0][i][j];
f[0][i+1][a[j].vis[x]]%=mod;
}
}
if(f[1][i][j])
{
for(int k=0;k<=9;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=f[1][i][j];
f[1][i+1][a[j].vis[k]]%=mod;
}
}
}
}
}
for(int i=0;i<=cnt;i++)
{
ans+=f[0][m][i];
ans%=mod;
ans+=f[1][m][i];
ans%=mod;
}
printf("%lld",ans);
}