[LeetCode] Minimum Window Substring

本文提供了一种算法,在O(n)时间内找到字符串中包含所有指定子串的最短窗口。通过使用双指针技巧,动态维护一个窗口来匹配目标子串,确保高效解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

For example,
S = "ADOBECODEBANC"
T = "ABC"

Minimum window is "BANC".

Note:
If there is no such window in S that covers all characters in T, return the emtpy string "".

If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.

 

Hide Tags
  Hash Table Two Pointers String
 

思路:

双指针,动态维护一个区间。尾指针不断往后扫,当扫到有一个窗口包含了所有 T 的字符后,
然后再收缩头指针,直到不能再收缩为止。最后记录所有可能的情况中窗口最小的

时间复杂度 O(n),空间复杂度 O(1)

class Solution {
    public:
        string minWindow(string S, string T)
        {
            if(S.empty() || T.empty() || S.size() < T.size())
                return string();

            vector<int> expect(256, 0);
            vector<int> appear(256, 0);

            for(int i = 0; i < T.size(); i++)
            {   
                expect[T[i]] ++; 
            }   

            int minWidth = INT_MAX, min_start = 0; //
            int win_start = 0;
            int appearCharCnt = 0;
            for(int win_end = 0; win_end < S.size(); win_end++)
            {   
                if(expect[S[win_end]] > 0) // this char is part of T
                {   
                    appear[S[win_end]]++;
                    if(appear[S[win_end]] <= expect[S[win_end]])
                        appearCharCnt ++; 
                }   
                //cout << "appearCharCnt\t" <<appearCharCnt<< endl;
                if(appearCharCnt == T.size())
                {   
                    // shrink the start
                    while (appear[S[win_start]] > expect[S[win_start]]
                            || expect[S[win_start]] == 0) {
                        appear[S[win_start]]--;
                        win_start++;
                    }
                    if ((win_end - win_start + 1) < minWidth) {
                        minWidth = win_end - win_start + 1;
                        min_start = win_start;
                        //cout << "min_start\t" <<min_start << endl;
                        //cout << "min_width\t" <<minWidth<< endl;
                    }
                }
            }

            if (minWidth == INT_MAX)
                return "";
            else
                return S.substr(min_start, minWidth);


        }
};

 

精简一下条件判断

class Solution {
    public:
        string minWindow(string S, string T)
        {
            if(S.empty() || T.empty() || S.size() < T.size())
                return string();

            vector<int> expect(256, 0);
            vector<int> appear(256, 0);

            for(int i = 0; i < T.size(); i++)
            {
                expect[T[i]] ++;
            }

            int minWidth = INT_MAX, min_start = 0; 
            int win_start = 0;
            int appearCharCnt = 0;
            for(int win_end = 0; win_end < S.size(); win_end++)
            {   
                appear[S[win_end]]++;
                if(appear[S[win_end]] <= expect[S[win_end]])
                    appearCharCnt ++; 
                //cout << "appearCharCnt\t" <<appearCharCnt<< endl;
                if(appearCharCnt == T.size())
                {   
                    // shrink the win start
                    while (appear[S[win_start]] > expect[S[win_start]]
                          ) { 
                        appear[S[win_start]]--;
                        win_start++;
                    }   
                    if ((win_end - win_start + 1) < minWidth) {
                        minWidth = win_end - win_start + 1;
                        min_start = win_start;
                        //cout << "min_start\t" <<min_start << endl;
                        //cout << "min_width\t" <<minWidth<< endl;
                    }
                }
            }

            if (minWidth == INT_MAX)
                return "";
            else
                return S.substr(min_start, minWidth);


        }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值