[LeetCode] Minimum Size Subarray Sum

本文介绍了两种求解子数组最小长度问题的算法:O(n) 和 O(nlogn)。O(n) 方法通过滑动窗口高效查找满足条件的最小子数组;O(nlogn) 则利用累积和与二分搜索实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The problem statement has stated that there are both O(n) and O(nlogn) solutions to this problem. Let's see the O(n) solution first (taken from this link), which is pretty clever and short.

 1 class Solution {
 2 public:
 3     int minSubArrayLen(int s, vector<int>& nums) {
 4         int start = 0, sum = 0, minlen = INT_MAX;
 5         for (int i = 0; i < (int)nums.size(); i++) {
 6             sum += nums[i];
 7             while (sum >= s) {
 8                 minlen = min(minlen, i - start + 1);
 9                 sum -= nums[start++];
10             }
11         }
12         return minlen == INT_MAX ? 0 : minlen;
13     }
14 };

Well, you may wonder how can it be O(n) since it contains an inner while loop. Well, the key is that the while loop executes at most once for each starting position start. Then start is increased by 1 and the while loop moves to the next element. Thus the inner while loop runs at most O(n) times during the whole for loop from 0 to nums.size() - 1. Thus both the forloop and while loop has O(n) time complexity in total and the overall running time is O(n).

There is another O(n) solution in this link, which is easier to understand and prove it is O(n). I have rewritten it below.

 1 class Solution {
 2 public:
 3     int minSubArrayLen(int s, vector<int>& nums) {
 4         int n = nums.size();
 5         int left = 0, right = 0, sum = 0, minlen = INT_MAX;
 6         while (right < n) {
 7             do sum += nums[right++];
 8             while (right < n && sum < s);
 9             while (left < right && sum - nums[left] >= s)
10                 sum -= nums[left++];
11             if (sum >= s) minlen = min(minlen, right - left);
12         }
13         return minlen == INT_MAX ? 0 : minlen;
14     }
15 };

Now let's move on to the O(nlogn) solution. Well, this less efficient solution is far more difficult to come up with. The idea is to first maintain an array of accumulated summations of elements innums. Specifically, for nums = [2, 3, 1, 2, 4, 3] in the problem statement, sums = [0, 2, 5, 6, 8, 12, 15]. Then for each element in sums, if it is not less than s, we search for the first element that is greater than sums[i] - s (in fact, this is just what the upper_bound function does) in sumsusing binary search.

Let's do an example. Suppose we reach 12 in sums, which is greater than s = 7. We then search for the first element in sums that is greater than sums[i] - s = 12 - 7 = 5 and we find 6. Then we know that the elements in nums that correspond to 6, 8, 12 sum to a number 12 - 5 = 7 which is not less than s = 7. Let's check for that: 6 in sums corresponds to 1 in nums8 insums corresponds to 2 in nums12 in sums corresponds to 4 in nums1, 2, 4 sum to 7, which is 12 in sums minus 5 in sums.

We add a 0 in the first position of sums to account for cases like nums = [3], s = 3.

The code is as follows.

 1 class Solution {
 2 public:
 3     int minSubArrayLen(int s, vector<int>& nums) {
 4         vector<int> sums = accumulate(nums);
 5         int minlen = INT_MAX;
 6         for (int i = 1; i <= nums.size(); i++) {
 7             if (sums[i] >= s) {
 8                 int p = upper_bound(sums, 0, i, sums[i] - s);
 9                 if (p != -1) minlen = min(minlen, i - p + 1);
10             }
11         }
12         return minlen == INT_MAX ? 0 : minlen;
13     }
14 private:
15     vector<int> accumulate(vector<int>& nums) {
16         vector<int> sums(nums.size() + 1, 0);
17         for (int i = 1; i <= nums.size(); i++)
18             sums[i] = nums[i - 1] + sums[i - 1];
19         return sums;
20     }
21     int upper_bound(vector<int>& sums, int left, int right, int target) {
22         int l = left, r = right;
23         while (l < r) {
24             int m = l + ((r - l) >> 1);
25             if (sums[m] <= target) l = m + 1;
26             else r = m;
27         }
28         if (sums[r] > target) return r;
29         if (sums[l] > target) return l;
30         return -1;
31     }
32 };

 

转载于:https://www.cnblogs.com/jcliBlogger/p/4600467.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值