\[ [gcd(i,j)==d]\Rightarrow[\frac {gcd(i,j)}d==1]\Rightarrow\sum\limits_{k|\frac {gcd(i,j)}d}\mu(k) \]
接下来,多半会设\(kd=T\)
\[ \begin{split} \sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)==x]=\sum_{d=1}^{\lfloor\frac nx \rfloor}\mu(d)\lfloor\frac n{xd}\rfloor\lfloor\frac m{xd}\rfloor \end{split} \]
题目
\[ \begin{split} \sum_{x=1}^n\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)==x]&=\sum_{x=1}^n\sum_{d=1}^{\lfloor\frac nx \rfloor}\mu(d)\lfloor\frac n{xd}\rfloor\lfloor\frac m{xd}\rfloor\\ &=\sum_{T=1}^n\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{x|T}\mu(\frac Tx) \end{split} \]
其中,\(x\)为枚举你想要的\(gcd\),\(\sum_{x|T}\mu(\frac Tx)\)需要在线性筛中预处理。
题目
\[ \begin{split} \sum\limits_{i=1}^n\sum\limits_{j=1}^mh(gcd(i,j))&=\sum\limits_{d=1}^nh(d)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\mu(i)\lfloor\frac n{id}\rfloor\lfloor\frac m{id}\rfloor\\ &=\sum\limits_{T=1}^n\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum\limits_{d|T}\mu(\frac Td)h(d) \end{split} \]
其中\(h(x)\)为可以\(O(1)\)计算的,仅与\(gcd\)有关的函数,\(\sum\limits_{d|T}\mu(\frac Td)h(d)\)需要在线性筛中预处理。
题目
\[ \begin{split} ans&=\prod\limits_{i=1}^n\prod\limits_{j=1}^mh(gcd(i,j))\\ &=\prod\limits_{T=1}^n(\prod\limits_{d|T}h(d)^{\mu(\frac Td)})^{\lfloor\frac n{T}\rfloor\lfloor\frac m{T}\rfloor} \end{split} \]
其中\(h(x)\)为可以\(O(1)\)计算的,仅与\(gcd\)有关的函数,\(\prod\limits_{d|T}h(d)^{\mu(\frac Td)}\)需要在线性筛中预处理。
题目
\[ \begin{split} ans & =\sum\limits_{i=1}^n\sum\limits_{j=1}^m\text {lcm}(i,j) \\ &=\sum\limits_{d=1}^n d\cdot \sum\limits_{i=1}^{\lfloor\frac n d\rfloor}\mu(i)\cdot g(i)\\ &=\sum\limits_{T=1}^nsum(\lfloor\frac nT\rfloor)\cdot sum(\lfloor\frac mT\rfloor)\cdot T\sum\limits_{i|T}\mu(i)\cdot i\\ \end{split} \]
其中,$g(x)=x\cdot x\cdot \frac{(1+\lfloor\frac{n}{x}\rfloor)\cdot \lfloor\frac{n}{x}\rfloor}{2}\cdot \frac{(1+\lfloor\frac{m}{x}\rfloor)\cdot \lfloor\frac{m}{x}\rfloor}{2} $
其中\(sum(i)=\frac{(1+i)\cdot(i)}{2}\),可以直接计算出;\(\sum\limits_{i|T}\mu(i)\cdot i\)为积性函数,可以预处理出。
题目