莫比乌斯反演部分题目总结

\[ [gcd(i,j)==d]\Rightarrow[\frac {gcd(i,j)}d==1]\Rightarrow\sum\limits_{k|\frac {gcd(i,j)}d}\mu(k) \]

接下来,多半会设\(kd=T\)


\[ \begin{split} \sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)==x]=\sum_{d=1}^{\lfloor\frac nx \rfloor}\mu(d)\lfloor\frac n{xd}\rfloor\lfloor\frac m{xd}\rfloor \end{split} \]

题目

【BZOJ2818】Gcd

【NOI2010】能量采集


\[ \begin{split} \sum_{x=1}^n\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)==x]&=\sum_{x=1}^n\sum_{d=1}^{\lfloor\frac nx \rfloor}\mu(d)\lfloor\frac n{xd}\rfloor\lfloor\frac m{xd}\rfloor\\ &=\sum_{T=1}^n\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{x|T}\mu(\frac Tx) \end{split} \]

其中,\(x\)为枚举你想要的\(gcd\)\(\sum_{x|T}\mu(\frac Tx)\)需要在线性筛中预处理。

题目

【BZOJ2820】YY的GCD


\[ \begin{split} \sum\limits_{i=1}^n\sum\limits_{j=1}^mh(gcd(i,j))&=\sum\limits_{d=1}^nh(d)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\mu(i)\lfloor\frac n{id}\rfloor\lfloor\frac m{id}\rfloor\\ &=\sum\limits_{T=1}^n\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum\limits_{d|T}\mu(\frac Td)h(d) \end{split} \]

其中\(h(x)\)为可以\(O(1)\)计算的,仅与\(gcd\)有关的函数,\(\sum\limits_{d|T}\mu(\frac Td)h(d)\)需要在线性筛中预处理。

题目

【BZOJ4407】于神之怒加强版

【SDOI2014】数表


\[ \begin{split} ans&=\prod\limits_{i=1}^n\prod\limits_{j=1}^mh(gcd(i,j))\\ &=\prod\limits_{T=1}^n(\prod\limits_{d|T}h(d)^{\mu(\frac Td)})^{\lfloor\frac n{T}\rfloor\lfloor\frac m{T}\rfloor} \end{split} \]

其中\(h(x)\)为可以\(O(1)\)计算的,仅与\(gcd\)有关的函数,\(\prod\limits_{d|T}h(d)^{\mu(\frac Td)}\)需要在线性筛中预处理。

题目

【SDOI2017】数字表格


\[ \begin{split} ans & =\sum\limits_{i=1}^n\sum\limits_{j=1}^m\text {lcm}(i,j) \\ &=\sum\limits_{d=1}^n d\cdot \sum\limits_{i=1}^{\lfloor\frac n d\rfloor}\mu(i)\cdot g(i)\\ &=\sum\limits_{T=1}^nsum(\lfloor\frac nT\rfloor)\cdot sum(\lfloor\frac mT\rfloor)\cdot T\sum\limits_{i|T}\mu(i)\cdot i\\ \end{split} \]

其中,$g(x)=x\cdot x\cdot \frac{(1+\lfloor\frac{n}{x}\rfloor)\cdot \lfloor\frac{n}{x}\rfloor}{2}\cdot \frac{(1+\lfloor\frac{m}{x}\rfloor)\cdot \lfloor\frac{m}{x}\rfloor}{2} $

其中\(sum(i)=\frac{(1+i)\cdot(i)}{2}\),可以直接计算出;\(\sum\limits_{i|T}\mu(i)\cdot i\)为积性函数,可以预处理出。

题目

【2011集训贾志鹏】Crash 的数字表格

【BZOJ2693】jzptab

转载于:https://www.cnblogs.com/Emiya-wjk/p/10009865.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值