ACM-ICPC 2018 焦作赛区网络预赛

本文提供ACM-ICPC2018焦作赛区网络预赛的题解,涵盖从A到K等多道题目,包括MagicMirror、MathematicalCurse、JiuYuanWantstoEat等,解析了算法思路并提供了代码实现。

这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊。

每天都有新的难过

 A. Magic Mirror

Jessie has a magic mirror.

Every morning she will ask the mirror: 'Mirror mirror tell me, who is the most beautiful girl in the world?' If the mirror says her name, she will praise the mirror: 'Good guy!', but if the mirror says the name of another person, she will assail the mirror: 'Dare you say that again?'

Today Jessie asks the mirror the same question above, and you are given a series of mirror's answers. For each answer, please output Jessie's response. You can assume that the uppercase or lowercase letters appearing anywhere in the name will have no influence on the answer. For example, 'Jessie' and 'jessie' represent the same person.

Input

The first line contains an integer T(1 \le T \le 100)T(1T100), which is the number of test cases.

Each test case contains one line with a single-word name, which contains only English letters. The length of each name is no more than 1515.

Output

For each test case, output one line containing the answer.

样例输入复制
2
Jessie
Justin
样例输出复制
Good guy!
Dare you say that again?
题目来源

ACM-ICPC 2018 焦作赛区网络预赛

大小写转换一下

#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define pb push_back
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define pll pair<long long,long long>
#define pii pair<int,int>
#define pq priority_queue
const int N=1e5+5,MD=1e9+7,INF=0x3f3f3f3f;
const ll LL_INF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-9,e=exp(1),PI=acos(-1.);
int a[N];
int main()
{
    ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
    int T;
    cin>>T;
    while(T--)
    {
        string s;
        cin>>s;
        for(int i=0;s[i];i++)if(s[i]>='A'&&s[i]<='Z')s[i]+=32;
        if(s=="jessie")cout<<"Good guy!\n";
        else cout<<"Dare you say that again?\n";
    }
    return 0;
}

 B. Mathematical Curse

A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics when he was young, and was entangled in some mathematical curses. He studied hard until he reached adulthood and decided to use his knowledge to escape the castle.

There are NN rooms from the place where he was imprisoned to the exit of the castle. In the i^{th}ith room, there is a wizard who has a resentment value of a[i]a[i]. The prince has MM curses, the j^{th}jthcurse is f[j]f[j], and f[j]f[j] represents one of the four arithmetic operations, namely addition('+'), subtraction('-'), multiplication('*'), and integer division('/'). The prince's initial resentment value is KK. Entering a room and fighting with the wizard will eliminate a curse, but the prince's resentment value will become the result of the arithmetic operation f[j]f[j] with the wizard's resentment value. That is, if the prince eliminates the j^{th}jth curse in the i^{th}ithroom, then his resentment value will change from xx to (x\ f[j]\ a[i]x f[j] a[i]), for example, when x=1, a[i]=2, f[j]=x=1,a[i]=2,f[j]='+', then xxwill become 1+2=31+2=3.

Before the prince escapes from the castle, he must eliminate all the curses. He must go from a[1]a[1] to a[N]a[N] in order and cannot turn back. He must also eliminate the f[1]f[1] to f[M]f[M] curses in order(It is guaranteed that N\ge MNM). What is the maximum resentment value that the prince may have when he leaves the castle?

Input

The first line contains an integer T(1 \le T \le 1000)T(1T1000), which is the number of test cases.

For each test case, the first line contains three non-zero integers: N(1 \le N \le 1000), M(1 \le M \le 5)N(1N1000),M(1M5)and K(-1000 \le K \le 1000K(1000K1000), the second line contains NN non-zero integers: a[1], a[2], ..., a[N](-1000 \le a[i] \le 1000)a[1],a[2],...,a[N](1000a[i]1000), and the third line contains MM characters: f[1], f[2], ..., f[M](f[j] =f[1],f[2],...,f[M](f[j]='+','-','*','/', with no spaces in between.

Output

For each test case, output one line containing a single integer.

样例输入复制
3
2 1 5
2 3
/
3 2 1
1 2 3
++
4 4 5
1 2 3 4
+-*/
样例输出复制
2
6
3
题目来源

ACM-ICPC 2018 焦作赛区网络预赛

有一个负的,还有一个正的,所以都要进入dp

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF=1LL<<62;
ll dp1[1005][6],dp2[1005][6];
int a[1005];
char s[10];
ll calc(ll x,char c,int y)
{
    if(c=='-') return x-y;
    if(c=='+') return x+y;
    if(c=='/') return x/y;
    if(c=='*') return x*y;
}
int main()
{
    int T,n,m,k;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&k);
        for(int i=0;i<=n;i++)
            for(int j=0;j<=m;j++)
                dp1[i][j]=-INF,dp2[i][j]=INF;
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        for(int i=0;i<=n;i++)
            dp1[i][0]=dp2[i][0]=k;
        scanf("%s",s+1);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
            {
                dp1[i][j]=dp1[i-1][j];
                dp2[i][j]=dp2[i-1][j];
                if(dp1[i-1][j-1]!=-INF) dp1[i][j]=max(dp1[i][j],calc(dp1[i-1][j-1],s[j],a[i]));
                if(dp2[i-1][j-1]!=INF) dp1[i][j]=max(dp1[i][j],calc(dp2[i-1][j-1],s[j],a[i]));
                if(dp1[i-1][j-1]!=-INF) dp2[i][j]=min(dp2[i][j],calc(dp1[i-1][j-1],s[j],a[i]));
                if(dp2[i-1][j-1]!=INF) dp2[i][j]=min(dp2[i][j],calc(dp2[i-1][j-1],s[j],a[i]));
            }
        printf("%lld\n",dp1[n][m]);
    }
    return 0;
}

 E. Jiu Yuan Wants to Eat

You ye Jiu yuan is the daughter of the Great GOD Emancipator. And when she becomes an adult, she will be queen of Tusikur, so she wanted to travel the world while she was still young. In a country, she found a small pub called Whitehouse. Just as she was about to go in for a drink, the boss Carola appeared. And ask her to solve this problem or she will not be allowed to enter the pub. The problem description is as follows:

There is a tree with nn nodes, each node iicontains weight a[i]a[i], the initial value of a[i]a[i] is 00. The root number of the tree is 11. Now you need to do the following operations:

1)1) Multiply all weight on the path from uuto vv by xx

2)2) For all weight on the path from uu to vv, increasing xx to them

3)3) For all weight on the path from uu to vv, change them to the bitwise NOT of them

4)4) Ask the sum of the weight on the path from uu to vv

The answer modulo 2^{64}264.

Jiu Yuan is a clever girl, but she was not good at algorithm, so she hopes that you can help her solve this problem. Ding\backsim\backsim\backsim

The bitwise NOT is a unary operation that performs logical negation on each bit, forming the ones' complement of the given binary value. Bits that are 00become 11, and those that are 11 become 00. For example:

NOT 0111 (decimal 7) = 1000 (decimal 8)

NOT 10101011 = 01010100

Input

The input contains multiple groups of data.

For each group of data, the first line contains a number of nn, and the number of nodes.

The second line contains (n - 1)(n1)integers b_ibi, which means that the father node of node (i +1)(i+1) is b_ibi.

The third line contains one integer mm, which means the number of operations,

The next mm lines contain the following four operations:

At first, we input one integer opt

1)1) If opt is 11, then input 33 integers, u, v, xu,v,x, which means multiply all weight on the path from uu to vv by xx

2)2) If opt is 22, then input 33 integers, u, v, xu,v,x, which means for all weight on the path from uu to vv, increasing xx to them

3)3) If opt is 33, then input 22 integers, u, vu,v, which means for all weight on the path from uu to vv, change them to the bitwise NOT of them

4)4) If opt is 44, then input 22 integers, u, vu,v, and ask the sum of the weights on the path from uu to vv

1 \le n,m,u,v \le 10^51n,m,u,v105

1 \le x < 2^{64}1x<264

Output

For each operation 44, output the answer.

样例输入复制
7
1 1 1 2 2 4
5
2 5 6 1
1 1 6 2
4 5 6
3 5 2
4 2 2
2
1
4
3 1 2
4 1 2
3 1 1
4 1 1
样例输出复制
5
18446744073709551613
18446744073709551614
0
题目来源

ACM-ICPC 2018 焦作赛区网络预赛

队友LCT差一点调出来唉

划重点 按位取反是*-1+MAX 

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 100010
using namespace std;
typedef unsigned long long ull;
ull st[N],n,m,q,x,y,op,w,rev[N],size[N],c[N][2],fa[N];
ull mt[N],a[N],v[N],s[N];
bool isroot(ull x)
{
    return c[fa[x]][0]!=x&&c[fa[x]][1]!=x;
}
void updata(ull x)
{
    ull l=c[x][0],r=c[x][1];
    size[x]=size[l]+size[r]+1;
    s[x]=s[l]+s[r]+v[x];
}
void paint(ull x,ull cc,ull aa)
{
    if (!x) return;
    v[x]=v[x]*cc+aa;
    s[x]=s[x]*cc+size[x]*aa;
    a[x]=a[x]*cc+aa;
    mt[x]=mt[x]*cc;
}
void pushdown(ull x)
{
    ull l=c[x][0],r=c[x][1];
    if (rev[x])
    {
        rev[l]^=1;
        rev[r]^=1;
        rev[x]^=1;
        swap(c[x][0],c[x][1]);
    }
    ull aa=a[x],cc=mt[x];
    a[x]=0;
    mt[x]=1;
    if (cc!=1||aa!=0)
    {
        paint(l,cc,aa);
        paint(r,cc,aa);
    }
}
void rotata(ull x)
{
    ull y=fa[x],z=fa[y],l,r;
    if (x==c[y][0]) l=0;
    else l=1;
    r=l^1;
    if (!isroot(y))
    {
        if (c[z][0]==y)c[z][0]=x;
        else c[z][1]=x;
    }
    fa[x]=z;
    fa[y]=x;
    fa[c[x][r]]=y;
    c[y][l]=c[x][r];
    c[x][r]=y;
    updata(y);
    updata(x);
}
void splay(ull x)
{
    ull top(0);
    st[++top]=x;
    for(ull i=x; !isroot(i); i=fa[i]) st[++top]=fa[i];
    for (ull i=top; i; i--) pushdown(st[i]);
    while (!isroot(x))
    {
        ull y=fa[x],z=fa[y];
        if (!isroot(y))
        {
            if (c[y][0]==x^c[z][0]==y) rotata(x);
            else rotata(y);
        }
        rotata(x);
    }
}
void access(ull x)
{
    ull t(0);
    while (x)
    {
        splay(x);
        c[x][1]=t;
        t=x;
        updata(x);
        x=fa[x];
    }
}
void makeroot(ull x)
{
    access(x);
    splay(x);
    rev[x]^=1;
}
void link(ull x,ull y)
{
    makeroot(x);
    fa[x]=y;
}
void cut(ull x,ull y)
{
    makeroot(x);
    access(y);
    splay(y);
    c[y][0]=fa[x]=0;
}
void split(ull x,ull y)
{
    makeroot(y);
    access(x);
    splay(x);
}
int main()
{
    while(scanf("%llu",&n)!=EOF)
    {
        for (ull i=1; i<=n; i++) v[i]=0,size[i]=s[i]=mt[i]=1;
        memset(c,0,sizeof c);
        memset(fa,0,sizeof fa);
        for (ull i=2; i<=n; i++)
        {
            scanf("%llu",&y);
            link(y,i);
        }
        scanf("%llu",&q);
        for (ull i=1; i<=q; i++)
        {
            scanf("%llu%llu%llu",&op,&x,&y);
            if (op==2)//+w
            {
                scanf("%llu",&w);
                split(x,y);
                paint(x,1,w);
            }
            if (op==3)//not 2^64-1 18446744073709551615
            {
                split(x,y);
                paint(x,-1,18446744073709551615ull);
            }
            if (op==1)//*w
            {
                scanf("%llu",&w);
                split(x,y);
                paint(x,w,0);
            }
            if (op==4)//u,v
            {
                split(x,y);
                printf("%llu\n",s[x]);
            }
        }
    }
    return 0;
}

 F. Modular Production Line

An automobile factory has a car production line. Now the market is oversupply and the production line is often shut down. To make full use of resources, the manager divides the entire production line into NN parts (1...N)(1...N). Some continuous parts can produce sub-products. And each of sub-products has their own value. The manager will use spare time to produce sub-products to make money. Because of the limited spare time, each part of the production line could only work at most KK times. And Because of the limited materials, each of the sub-products could be produced only once. The manager wants to know the maximum value could he make by produce sub-products.

Input

The first line of input is TT, the number of test case.

The first line of each test case contains three integers, N, KN,K and MM. (MM is the number of different sub-product).

The next MM lines each contain three integers A_i, B_i, W_iAi,Bi,Wi describing a sub-product. The sub-product has value W_iWi. Only A_iAi to B_iBi parts work simultaneously will the sub-product be produced (include A_iAi to B_iBi).

1 \le T \le 1001T100

1 \le K \le M \le 2001KM200

1 \le N \le 10^51N105

1 \le A_i \le B_i \le N1AiBiN

1 \le W_i \le 10^51Wi105

Output

For each test case output the maximum value in a separate line.

样例输入复制
4
10 1 3
1 2 2
2 3 4
3 4 8
10 1 3
1 3 2
2 3 4
3 4 8
100000 1 3
1 100000 100000
1 2 3
100 200 300
100000 2 3
1 100000 100000
1 150 301
100 200 300
样例输出复制
10
8
100000
100301
题目来源

ACM-ICPC 2018 焦作赛区网络预赛

建图网络流

先对区间的端点进行离散化,然后建边

#include<bits/stdc++.h>
using namespace std;

const int N=1e4+5;
const int M=1e5+5;
const int INF=0x3f3f3f3f;

int FIR[N],TO[M],CAP[M],FLOW[M],COST[M],NEXT[M],tote;
int pre[N],dist[N],q[400000];
bool vis[N];
int n,m,S,T;
void init()
{
    tote=0;
    memset(FIR,-1,sizeof(FIR));
}
void add(int u,int v,int cap,int cost)
{
    TO[tote]=v;
    CAP[tote]=cap;
    FLOW[tote]=0;
    COST[tote]=cost;
    NEXT[tote]=FIR[u];
    FIR[u]=tote++;

    TO[tote]=u;
    CAP[tote]=0;
    FLOW[tote]=0;
    COST[tote]=-cost;
    NEXT[tote]=FIR[v];
    FIR[v]=tote++;
}
bool SPFA(int s, int t)
{
    memset(dist,INF,sizeof(dist));
    memset(vis,false,sizeof(vis));
    memset(pre,-1,sizeof(pre));
    dist[s] = 0;
    vis[s]=true;
    q[1]=s;
    int head=0,tail=1;
    while(head!=tail)
    {
        int u=q[++head];
        vis[u]=false;
        for(int v=FIR[u]; v!=-1; v=NEXT[v])
        {
            if(dist[TO[v]]>dist[u]+COST[v]&&CAP[v]>FLOW[v])
            {
                dist[TO[v]]=dist[u]+COST[v];
                pre[TO[v]]=v;
                if(!vis[TO[v]])
                {
                    vis[TO[v]] = true;
                    q[++tail]=TO[v];
                }
            }
        }
    }
    return pre[t]!=-1;
}
void MCMF(int s, int t, int &cost, int &flow)
{
    flow=cost=0;
    while(SPFA(s,t))
    {
        int Min=INF;
        for(int v=pre[t]; v!=-1; v=pre[TO[v^1]])
            Min=min(Min, CAP[v]-FLOW[v]);
        for(int v=pre[t]; v!=-1; v=pre[TO[v^1]])
        {
            FLOW[v]+=Min;
            FLOW[v^1]-=Min;
            cost+=COST[v]*Min;
        }
        flow+=Min;
    }
}
int l[205],r[205],c[205];
int a[405],b[100005];
int main()
{
    int ca,k;
    scanf("%d",&ca);
    while(ca--)
    {
        scanf("%d%d%d",&n,&k,&m);
        init();
        int num=0;
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d",&l[i],&r[i],&c[i]),r[i]+=1;
            a[++num]=l[i],a[++num]=r[i];
        }
        sort(a+1,a+num+1);
        num=unique(a+1,a+num+1)-a-1;
        for(int i=1;i<=num;i++)b[a[i]]=i;
        S=0;
        T=num+1;
        for(int i=0;i<=num;i++)add(i,i+1,k,0);
        for(int i=1;i<=m;i++)add(b[l[i]],b[r[i]],1,-c[i]);
        int cost,flow;
        MCMF(S,T,cost,flow);
        printf("%d\n",-cost);
    }
    return 0;
}

 

 G. Give Candies

There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more interesting, Miss Li comes up with the rule: All the children line up according to their student number (1...N)(1...N), and each time a child is invited, Miss Li randomly gives him some candies (at least one). The process goes on until there is no candy. Miss Li wants to know how many possible different distribution results are there.

Input

The first line contains an integer TT, the number of test case.

The next TT lines, each contains an integer NN.

1 \le T \le 1001T100

1 \le N \le 10^{100000}1N10100000

Output

For each test case output the number of possible results (mod 1000000007).

样例输入复制
1
4
样例输出复制
8
题目来源

ACM-ICPC 2018 焦作赛区网络预赛

转载于:https://www.cnblogs.com/BobHuang/p/9651648.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值