页面生成周期中的两个Application池的详情小弟了解

我们知道在asp.net页面的生成周期一开始的时候会调用一次Application对象的Application_start方法,我们都知道这个方法仅仅是在第一次执行的时候调用的,但是我们知道http请求是没有状态的,每次客户来了请求信息之后,经过页面生存周期的话,都会提前去反射编译global文件回去到元数据,生成一个Application对象,并且把他放入Application池中,这个对象维护了我们的请求管道模型,这样看来,客户的每一个请求都会,都会去判断池中有没有Application对象有就取出来,没有就去创建这个对象,这样多个请求,都会有Application对象,那他是怎么让这个Application_start方法仅仅执行一次的那?顿时让我疑惑不解,后来经过仔细查看源代码后,才发现,在整个管道中维护着的并不是一个Application对象,而是两个,一个特殊的Application池,这个池中存放的是特殊的全局的静态的Application对象,同时这个对象也可以存储一些全局的信息例如:我们统计网站在线人数信息使用,而另外的一个普通的Application池中存放的侧是真正维护管道19个事件的Application对象;这样在去想一下我们的管道就顺理成章了;

查看反编译源代码:

从IIS中的扩展程序把请求信息交给.net Framework开始:

首先通过ISAPIRuntime对象的Public int ProcessRequest(IntPrt ecb,int iWRType),这个方法中一个很牛逼的就是通过扩展程序把请求信息传到这个方法的ecb指针,同时这也是从扩展程序(非托管程序)到.net中的托管程序的一个交界处,这个ecb指针就执行了原始的请求信息的资源,是Windows中的一个资源,

在这个ProcessRequst方法中:wr=ISAPIWorkerRequest.CreateWorkerRequest(ecb,useropp) 把请求信息做了简单的封装到了WorkRequest对象中HttpRuntime.ProcessRequestNoDemand(wr);

最后交给了httpruntime对象的ProcessRequst方法来处理copntext=new HttpContext(wr,false);

在这个方法中又哦他能够给传递来的Workrequest对象创建了上下文对象,上下文对象中封装了完成了请求和响应报文信息HttpRequest和HttpResponse对象

同时IhttpHandler applicationInstance=HttpApplicationFactory.GetApplicationInstance(context)通过工厂创建了HttpApplication对象,进入这个方法GetApplicatioinInstance(context)后发现:_theApplicationFactory.EnsureInited()内部保证了global文件的编译,内部做了判断没有编译的话就编译这个文件,其次_theApplicationFactory.EnsureAppStartCalled(context)保证了Application_Start方法的执行,进入这个方法,里面进行了判断,如果这个方法没有调用,this.FireApplicaioinOnStart(context)就去执行这个方法,这个方法中HttpApplication specialApplicationInstance=this.GetSpecialApplicationInstance();获取了一个特殊的Application实例

其次我们在回到我们的GetApplicatioinInstance(context)方法来 里面的最后提到了return _theApplicationFactory.GetNormalApplicationInstance(context)返回一个NormalApplication实例,让这个实例去维护我们的Application管道,这样看下来就阔然开朗了,终于把疑惑很久的问题解决了。

转载于:https://www.cnblogs.com/One-dream-man/archive/2012/08/25/2656926.html

JFM7VX690T型SRAM型现场可编程门阵列技术手册主要介绍的是上海复旦微电子集团股份有限公司(简称复旦微电子)生产的高性能FPGA产品JFM7VX690T。该产品属于JFM7系列,具有现场可编程特性,集成了功能强大且可以灵活配置组合的可编程资源,适用于实现多种功能,如输入输出接口、通用数字逻辑、存储器、数字信号处理和时钟管理等。JFM7VX690T型FPGA适用于复杂、高速的数字逻辑电路,广泛应用于通讯、信息处理、工业控制、数据中心、仪表测量、医疗仪器、人工智能、自动驾驶等领域。 产品特点包括: 1. 可配置逻辑资源(CLB),使用LUT6结构。 2. 包含CLB模块,可用于实现常规数字逻辑和分布式RAM。 3. 含有I/O、BlockRAM、DSP、MMCM、GTH等可编程模块。 4. 提供不同的封装规格和工作温度范围的产品,便于满足不同的使用环境。 JFM7VX690T产品系列中,有多种型号可供选择。例如: - JFM7VX690T80采用FCBGA1927封装,尺寸为45x45mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T80-AS同样采用FCBGA1927封装,但工作温度范围更广,为-55°C到+125°C,同样使用锡银焊球。 - JFM7VX690T80-N采用FCBGA1927封装和铅锡焊球,工作温度范围与JFM7VX690T80-AS相同。 - JFM7VX690T36的封装规格为FCBGA1761,尺寸为42.5x42.5mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T36-AS使用锡银焊球,工作温度范围为-55°C到+125°C。 - JFM7VX690T36-N使用铅锡焊球,工作温度范围与JFM7VX690T36-AS相同。 技术手册中还包含了一系列详细的技术参数,包括极限参数、推荐工作条件、电特性参数、ESD等级、MSL等级、重量等。在产品参数章节中,还特别强调了封装类型,包括外形图和尺寸、引出端定义等。引出端定义是指对FPGA芯片上的各个引脚的功能和接线规则进行说明,这对于FPGA的正确应用和电路设计至关重要。 应用指南章节涉及了FPGA在不同应用场景下的推荐使用方法。其中差异说明部分可能涉及产品之间的性能差异;关键性能对比可能包括功耗与速度对比、上电浪涌电流测试情况说明、GTH Channel Loss性能差异说明、GTH电源性能差异说明等。此外,手册可能还提供了其他推荐应用方案,例如不使用的BANK接法推荐、CCLK信号PCB布线推荐、JTAG级联PCB布线推荐、系统工作的复位方案推荐等,这些内容对于提高系统性能和稳定性有着重要作用。 焊接及注意事项章节则针对产品的焊接过程提供了指导,强调焊接过程中的注意事项,以确保产品在组装过程中的稳定性和可靠性。手册还明确指出,未经复旦微电子的许可,不得翻印或者复制全部或部分本资料的内容,且不承担采购方选择与使用本文描述的产品和服务的责任。 上海复旦微电子集团股份有限公司拥有相关的商标和知识产权。该公司在中国发布的技术手册,版权为上海复旦微电子集团股份有限公司所有,未经许可不得进行复制或传播。 技术手册提供了上海复旦微电子集团股份有限公司销售及服务网点的信息,方便用户在需要时能够联系到相应的服务机构,获取最新信息和必要的支持。同时,用户可以访问复旦微电子的官方网站(***以获取更多产品信息和公司动态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值