RCNN、SppNET、Fast RCNN、Faster RCNN

本文详细介绍了RCNN算法的工作流程,包括候选区域生成、特征提取、分类与位置修正等步骤,并对比了其与穷举搜索等传统方法的区别。此外还介绍了预训练与调优过程所使用的数据集。

一、跟经典的目标检测算法的比较:

   1、穷举搜索(Exhaustive Search),选择一个窗口(window)扫描整张图像(image),改变窗口的大小,继续扫描整张图像。

二、RCNN算法分为4个步骤 
  1、一张图像生成1K~2K个候选区域 (Selective Search)

  2、对每个候选区域,使用深度网络提取特征 
  3、特征送入每一类的SVM 分类器,判别是否属于该类 
  4、使用回归器精细修正候选框位置 

 

1、合并规则、多样化与后处理

2、首先把候选区域归一化成同一尺寸227×227

  预训练使用识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类

  调优训练检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类

3、SVM 分类器

4、回归器

 

转载于:https://www.cnblogs.com/wangxiao-zb/p/7794679.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值