hdu 1058 Humble Numbers (DP)

本文介绍了一个算法,用于找到给定序列中指定位置的谦逊数。谦逊数是仅由质因数2、3、5或7构成的数。通过使用动态规划方法,可以高效地计算出序列中的任一谦逊数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Humble Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15978    Accepted Submission(s): 6915


Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. 

Write a program to find and print the nth element in this sequence
 

 

Input
The input consists of one or more test cases. Each test case consists of one integer n with 1 <= n <= 5842. Input is terminated by a value of zero (0) for n.
 

 

Output
For each test case, print one line saying "The nth humble number is number.". Depending on the value of n, the correct suffix "st", "nd", "rd", or "th" for the ordinal number nth has to be used like it is shown in the sample output.
 

 

Sample Input
1
2
3
4
11
12
13
21
22
23
100
1000
5842
0
 

 

Sample Output
The 1st humble number is 1.
The 2nd humble number is 2.
The 3rd humble number is 3.
The 4th humble number is 4.
The 11th humble number is 12.
The 12th humble number is 14.
The 13th humble number is 15.
The 21st humble number is 28.
The 22nd humble number is 30.
The 23rd humble number is 32.
The 100th humble number is 450.
The 1000th humble number is 385875.
The 5842nd humble number is 2000000000.
 
 

 

Source
 

 

Recommend
JGShining   |   We have carefully selected several similar problems for you:   1421  1024  1505  2577  2870 
 

简单DP,有点巧妙:

 1 //93 MS    228 KB    GNU C++
 2 #include<stdio.h>
 3 int ans[6000];
 4 inline int Min(int a,int b)
 5 {
 6     return a<b?a:b;
 7 }
 8 void init()
 9 {
10     int m1=0,m2=0,m3=0,m4=0;
11     int t1,t2,t3,t4;
12     ans[0]=1;
13     int i=1;
14     while(i<5842){
15         t1=ans[m1]*2;
16         t2=ans[m2]*3;
17         t3=ans[m3]*5; 
18         t4=ans[m4]*7;
19         int tmp=Min(Min(t1,t2),Min(t3,t4));
20         ans[i++]=tmp;
21         if(tmp==t1) m1++;
22         if(tmp==t2) m2++;
23         if(tmp==t3) m3++;
24         if(tmp==t4) m4++; 
25     }
26 }
27 int main(void)
28 {
29     int n;
30     init();
31     while(scanf("%d",&n)!=EOF && n)
32     {
33         if(n%10==1 && n%100!=11) printf("The %dst humble number is ",n);
34         else if(n%10==2 && n%100!=12) printf("The %dnd humble number is ",n);
35         else if(n%10==3 && n%100!=13) printf("The %drd humble number is ",n);
36         else printf("The %dth humble number is ",n);
37         printf("%d.\n",ans[n-1]);
38     }
39     return 0;
40 }

 

转载于:https://www.cnblogs.com/GO-NO-1/p/3684865.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值