网络流

 

先贴代码

最大流-Dinic

struct Max_Flow {
    struct Edge {
        int from, to, cap, flow;
    };
    std::vector<Edge> edges;
    std::vector<int> G[N];
    int level[N], cur[N];
    int n, m, s, t;
 
    void init(int n) {
        this->n = n;
        for (int i=0; i<=n; ++i) {
            G[i].clear ();
        }
        edges.clear ();
    }
    void add_edge(int from, int to, int cap) {
        edges.push_back ((Edge) {from, to, cap, 0});
        edges.push_back ((Edge) {to, from, 0, 0});
        m = edges.size ();
        G[from].push_back (m - 2);
        G[to].push_back (m - 1);
    }
    bool BFS() {
        std::fill (level, level+1+n, -1);
        std::queue<int> que;
        level[s] = 0; que.push (s);
        while (!que.empty ()) {
            int u = que.front (); que.pop ();
            for (int i=0; i<G[u].size (); ++i) {
                Edge &e = edges[G[u][i]];
                if (level[e.to] == -1 && e.cap > e.flow) {
                    level[e.to] = level[u] + 1;
                    que.push (e.to);
                }
            }
        }
        return level[t] != -1;
    }
    int DFS(int u, int a) {
        if (u == t || a == 0) {
            return a;
        }
        int flow = 0, f;
        for (int &i=cur[u]; i<G[u].size (); ++i) {
            Edge &e = edges[G[u][i]];
            if (level[u] + 1 == level[e.to]
            && (f = DFS (e.to, std::min (a, e.cap - e.flow))) > 0) {
                e.flow += f;
                edges[G[u][i]^1].flow -= f;
                flow += f; a -= f;
                if (a == 0) {
                    break;
                }
            }
        }
        return flow;
    }
    int Dinic(int s, int t) {
        this->s = s; this->t = t;
        int flow = 0;
        while (BFS ())  {
            std::fill (cur, cur+1+n, 0);
            flow += DFS (s, INF);
        }
        return flow;
    }
};

 

最小费用最大流(SPFA)

struct Min_Cost_Max_Flow {
    struct Edge {
        int from, to, cap, flow, cost;
    };
    std::vector<Edge> edges;
    std::vector<int> G[N];
    bool vis[N];
    int d[N], p[N], a[N];
    int n, m, s, t;
    
    void init(int n) {
        this->n = n;
        for (int i=0; i<=n; ++i) {
            G[i].clear ();
        }
        edges.clear ();
    }
    void add_edge(int from, int to, int cap, int cost)    {
        edges.push_back ((Edge) {from, to, cap, 0, cost});
        edges.push_back ((Edge) {to, from, 0, 0, -cost});
        m = edges.size ();
        G[from].push_back (m - 2);
        G[to].push_back (m - 1);
    }
    bool SPFA(int &flow, int &cost) {
        memset (d, INF, sizeof (d));
        memset (vis, false, sizeof (vis));
        memset (p, -1, sizeof (p));
        d[s] = 0; vis[s] = true; p[s] = 0; a[s] = INF;

        std::queue<int> que; que.push (s);
        while (!que.empty ()) {
            int u = que.front (); que.pop ();
            vis[u] = false;
            for (int i=0; i<G[u].size (); ++i)   {
                Edge &e = edges[G[u][i]];
                if (e.cap > e.flow && d[e.to] > d[u] + e.cost)   {
                    d[e.to] = d[u] + e.cost;
                    p[e.to] = G[u][i];
                    a[e.to] = std::min (a[u], e.cap - e.flow);
                    if (!vis[e.to])    {
                        vis[e.to] = true;
                        que.push (e.to);
                    }
                }
            }
        }

        if (d[t] == INF) {
            return false;
        }
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while (u != s) {
            edges[p[u]].flow += a[t];
            edges[p[u]^1].flow -= a[t];
            u = edges[p[u]].from;
        }
        return true;
    }
    void run(int s, int t, int &flow, int &cost)    {
        this->s = s; this->t = t;
        flow = cost = 0;
        while (SPFA (flow, cost));
    }   
};

  

转载于:https://www.cnblogs.com/Running-Time/p/5386335.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值