[POJ3181] Dollar Dayz

Description

Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are:

        1 @ US$3 + 1 @ US$2

1 @ US$3 + 2 @ US$1
1 @ US$2 + 3 @ US$1
2 @ US$2 + 1 @ US$1
5 @ US$1
Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).

Input

A single line with two space-separated integers: N and K.

Output

A single line with a single integer that is the number of unique ways FJ can spend his money.

 

题解:

dp+高精加

显然完全背包dp,dp[j]+=dp[j-i]

需要高精加法

 

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;

const int N = 1010;

int dp[N][110];

int gi() {
  int x=0,o=1; char ch=getchar();
  while(ch!='-' && (ch<'0' || ch>'9')) ch=getchar();
  if(ch=='-') o=-1,ch=getchar();
  while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
  return o*x;
}

void plu(int x, int y) {
  int c=0,k=max(dp[x][0],dp[y][0]);
  for(int i=1; i<=k; i++) {
    dp[x][i]=dp[x][i]+dp[y][i]+c;
    c=dp[x][i]/10;
    dp[x][i]%=10;
  }
  dp[x][0]=k;
  while(c) {
    dp[x][++dp[x][0]]=c%10;
    c/=10;
  }
}

int main() {
  int m=gi(),n=gi();
  dp[0][0]=1,dp[0][1]=1;
  for(int i=1; i<=n; i++)
    for(int j=i; j<=m; j++)
      plu(j,j-i);
  for(int i=dp[m][0]; i>=1; i--)
    printf("%d", dp[m][i]);
  return 0;
}

 

转载于:https://www.cnblogs.com/HLXZZ/p/7509472.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值