机器学习入门-提取文章的主题词 1.jieba.analyse.extract_tags(提取主题词)

本文介绍了如何利用jieba库在Python中提取文本的主题词。步骤包括读取语料库、分词、去除停用词,以及使用jieba.analyse.extract_tags函数来获取文章的关键内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.jieba.analyse.extract_tags(text)  text必须是一连串的字符串才可以

第一步:进行语料库的读取

第二步:进行分词操作

第三步:载入停用词,同时对分词后的语料库进行停用词的去除

第四步:选取一段文本分词列表,串接成字符串,使用jieba.analyse.extract_tags提取主题词

import pandas as pd
import numpy as np
import jieba

# 1.导入数据语料的新闻数据
df_data = pd.read_table('data/val.txt', names=['category', 'th
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值