Github: github.com/laoqiren/ml…
刚兴趣的同学欢迎加QQ群:485305514
交流
mlhelper
Algorithms and utils for Machine Learning in JavaScript based on Node.js. while implementing commonly used machine learning algorithms, This library attempts to provide more abundant ecology, such as matrix and vector operations, file parsing, feature engineering, data visualization, and so on.
QQ Group
: 485305514
Installation
$ npm install mlhelper
复制代码
Docoumention
Example
Algorithm
const AdaBoost = require('mlhelper').algorithm.AdaBoost;
const dataSet = [
[1.0,2.1],
[2.0,1.1],
[1.3,1.0],
[1.0,1.0],
[2.0,1.0]
]
const labels = [1.0,1.0,-1.0,-1.0,1.0];
let ada = new AdaBoost(dataSet,labels,40);
let result = ada.classify([[1.0,2.1],
[2.0,1.1],
[1.3,1.0],
[1.0,1.0],
[2.0,1.0]]);
console.log(result); // [ 1, 1, -1, -1, -1 ]
复制代码
Utils
Matrix:
const Matrix = require('mlhelper').utils.Matrix;
let m1 = new Matrix([
[1,2,3],
[3,4,5]
]);
let m2 = new Matrix([
[2,2,6],
[3,1,5]
]);
console.log(m2.sub(m1)) // Matrix { arr: [ [ 1, 0, 3 ], [ 0, -3, 0 ] ] }
console.log(m1.mult(m2)) // Matrix { arr: [ [ 2, 4, 18 ], [ 9, 4, 25 ] ] }
复制代码
Vector:
const Vector = require('mlhelper').utils.Vector;
let v = new Vector([5,10,7,1]);
console.log(v.argSort()) // [ 3, 0, 2, 1 ]
复制代码
fileParser:
const parser = require('mlhelper').utils.fileParser;
let dt = parser.read_csv(path.join(__dirname,'./train.csv'),{
index_col: 0,
delimiter: ',',
header: 0,
dataType: 'number'
});
let labels = dt.getClasses();
let dataSet =dt.drop('quality').values;
复制代码
Feature Engineering
// preprocessing features
const preprocessing = require('mlhelper').utils.features.preprocessing;
// make the features obey the standard normal distribution(Standardization)
let testStandardScaler = preprocessing.standardScaler(dataSet);
let testNormalize = preprocessing.normalize(dataSet);
let testBinarizer = preprocessing.binarizer(dataSet);
// ...
复制代码
graph tools:
Decision Tree:
charts.drawDT(dt.getTree(),{
width:600,
height:400
});
复制代码
logistic regression
charts.drawLogistic(dataSet,labels,weights);
复制代码
Contribute
The original purpose of this project is to learn, and now I need more people to participate in this project, and any issue and good advice is welcome.
git clone
git clone https://github.com/laoqiren/mlhelper.git
复制代码
install dependencies&&devdependecies
npm install
复制代码
development
npm run dev
复制代码
test
npm run test
复制代码
build
npm run build
复制代码
LICENSE
MIT.
You can use the project for any purpose, except for illegal activities.