转载请注明出处:http://blog.youkuaiyun.com/u012860063?viewmode=contents
id=1068
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
题意:
一组括号 (((( ) ( ) ( ) ) ) )
有两种描写叙述方法:
P方法:4 5 6 6 6 6 - 每个‘)’前,有几个‘(’
W方法:1 1 1 4 5 6 - 每个‘)‘的前面第几个(注意是从当前位置往前面数)’(‘是跟它匹配的
要求是依据P求W
思路:
先依据P还原出括号的位置,在计算出W就可以。
代码例如以下:
#include <iostream>
using namespace std;
#include <cstring>
#define N 117
char s[10000];
int n;
int i, j, k, l;
int p[N],w[N], flag[N];
void WW()
{
int x = 1;
int count = 0;
for(i = 1; i < l; i++)
{
if(s[i] == ')')
{
for(j = i-1; j >= 1; j--)
{
if(s[j] == '(')
count++;
if(flag[j] == 0 && s[j] == '(')
{
flag[j] = 1;
w[x++] = count;
break;
}
}
count = 0;
}
}
}
int main()
{
int t;
while(cin >> t)
{
while(t--)
{
memset(flag,0,sizeof(flag));
cin >> n;
k = 0, l = 1;
for(i = 1; i <= n; i++)
{
cin >> p[i];
for(j = 1; j <= p[i] - k; j++)
{
s[l++] = '(';
}
s[l++] = ')';
k = p[i];
}
// cout<<s<<endl;
WW();
for(i = 1; i < n; i++)
{
cout<<w[i]<<' ';
}
cout<<w[n]<<endl;
}
}
return 0;
}