public class BinaryTree {
//根节点
private Node root;
/**
* 树的结点
*/
private static class Node{
//数据域
private long data;
//左子结点
private Node leftChild;
//右子结点
private Node rightChild;
Node(long data){
this.data = data;
}
}
/**
* 插入结点
* @param data
*/
public void insert(long data){
Node newNode = new Node(data);
Node currNode = root;
Node parentNode;
//如果是空树
if(root == null){
root = newNode;
return;
}
while(true){
parentNode = currNode;
//向右搜寻
if(data > currNode.data){
currNode = currNode.rightChild;
if(currNode == null){
parentNode.rightChild = newNode;
return;
}
}else{
//向左搜寻
currNode = currNode.leftChild;
if(currNode == null){
parentNode.leftChild = newNode;
return;
}
}
}
}
/**
* 前序遍历
* @param currNode
*/
public void preOrder(Node currNode){
if(currNode == null){
return;
}
System.out.print(currNode.data+" ");
preOrder(currNode.leftChild);
preOrder(currNode.rightChild);
}
/**
* 中序遍历
* @param currNode
*/
public void inOrder(Node currNode){
if(currNode == null){
return;
}
inOrder(currNode.leftChild);
System.out.print(currNode.data+" ");
inOrder(currNode.rightChild);
}
/**
* 后序遍历
* @param currNode
*/
public void postOrder(Node currNode){
if(currNode == null){
return;
}
postOrder(currNode.leftChild);
postOrder(currNode.rightChild);
System.out.print(currNode.data+" ");
}
/**
* 查找结点
*/
public Node find(long data){
Node currNode = root;
while(currNode!=null){
if(data>currNode.data){
currNode = currNode.rightChild;
}else if(data<currNode.data){
currNode = currNode.leftChild;
}else{
return currNode;
}
}
return null;
}
/**
* 删除结点 分为3种情况
* 1.叶子结点
* 2.该节点有一个子节点
* 3.该节点有二个子节点
* @param data
*/
public boolean delete(long data) throws Exception {
Node curr = root;
//保持一个父节点的引用
Node parent = curr;
//删除结点是左子结点还是右子结点,
boolean isLeft = true;
while(curr != null && curr.data!=data){
parent = curr;
if(data > curr.data){
curr = curr.rightChild;
isLeft = false;
}else{
curr = curr.leftChild;
isLeft = true;
}
}
if(curr==null){
throw new Exception("要删除的结点不存在");
}
//第一种情况,要删除的结点为叶子结点
if(curr.leftChild == null && curr.rightChild == null){
if(curr == root){
root = null;
return true;
}
if(isLeft){
parent.leftChild = null;
}else{
parent.rightChild = null;
}
}else if(curr.leftChild == null){
//第二种情况,要删除的结点有一个子节点且是右子结点
if(curr == root){
root = curr.rightChild;
return true;
}
if(isLeft){
parent.leftChild = curr.rightChild;
}else{
parent.rightChild = curr.rightChild;
}
}else if(curr.rightChild == null){
//第二种情况,要删除的结点有一个子节点且是左子结点
if(curr == root){
root = curr.leftChild;
return true;
}
if(isLeft){
parent.leftChild = curr.leftChild;
}else{
parent.rightChild = curr.leftChild;
}
}else{
//第三种情况,也是最复杂的一种情况,要删除的结点有两个子节点,需要找寻中序后继结点
Node succeeder = getSucceeder(curr);
if(curr == root){
root = succeeder;
return true;
}
if(isLeft){
parent.leftChild = succeeder;
}else{
parent.rightChild = succeeder;
}
//当后继结点为删除结点的右子结点
succeeder.leftChild = curr.leftChild;
}
return true;
}
public Node getSucceeder(Node delNode){
Node succeeder = delNode;
Node parent = delNode;
Node currNode = delNode.rightChild;
//寻找后继结点
while(currNode != null){
parent = succeeder;
succeeder = currNode;
currNode = currNode.leftChild;
}
//如果后继结点不是要删除结点的右子结点
if(succeeder != delNode.rightChild){
parent.leftChild = succeeder.rightChild;
//将后继结点的左右子结点分别指向要删除结点的左右子节点
succeeder.leftChild = delNode.leftChild;
succeeder.rightChild = delNode.rightChild;
}
return succeeder;
}
public static void main(String []args) throws Exception {
BinaryTree binaryTree = new BinaryTree();
//插入操作
binaryTree.insert(5);
binaryTree.insert(2);
binaryTree.insert(8);
binaryTree.insert(1);
binaryTree.insert(3);
binaryTree.insert(6);
binaryTree.insert(10);
//前序遍历
System.out.println("前序遍历:");
binaryTree.preOrder(binaryTree.root);
System.out.println();
//中序遍历
System.out.println("中序遍历:");
binaryTree.inOrder(binaryTree.root);
System.out.println();
//后序遍历
System.out.println("后序遍历:");
binaryTree.postOrder(binaryTree.root);
System.out.println();
//查找结点
Node node = binaryTree.find(10);
System.out.println("找到结点,其值为:"+node.data);
//删除结点
binaryTree.delete(8);
System.out.print("删除结点8,中序遍历:");
binaryTree.preOrder(binaryTree.root);
}
}
复制代码
二叉树
最新推荐文章于 2025-09-07 20:32:33 发布