hdu 4960 记忆化搜索 DP

本文介绍了一个关于OCD患者希望将不规则排列的塑料泥调整为对称形状的问题,并提出了一种通过记忆化搜索算法来解决该问题的方法。通过对每段连续的对称部分进行成本计算,寻找最小化总成本的方案。

Another OCD Patient

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 490    Accepted Submission(s): 180

Problem Description
   Xiaoji is an OCD (obsessive-compulsive disorder) patient. This morning, his children played with plasticene. They broke the plasticene into N pieces, and put them in a line. Each piece has a volume Vi. Since Xiaoji is an OCD patient, he can't stand with the disorder of the volume of the N pieces of plasticene. Now he wants to merge some successive pieces so that the volume in line is symmetrical! For example, (10, 20, 20, 10), (4,1,4) and (2) are symmetrical but (3,1,2), (3, 1, 1) and (1, 2, 1, 2) are not.
   However, because Xiaoji's OCD is more and more serious, now he has a strange opinion that merging i successive pieces into one will cost ai. And he wants to achieve his goal with minimum cost. Can you help him?
   By the way, if one piece is merged by Xiaoji, he would not use it to merge again. Don't ask why. You should know Xiaoji has an OCD.
 
Input
   The input contains multiple test cases.
   The first line of each case is an integer N (0 < N <= 5000), indicating the number of pieces in a line. The second line contains N integers Vi, volume of each piece (0 < Vi <=10^9). The third line contains N integers ai (0 < ai <=10000), and a1 is always 0.
   The input is terminated by N = 0.
 
Output
   Output one line containing the minimum cost of all operations Xiaoji needs.
 
Sample Input
5 6 2 8 7 1 0 5 2 10 20 0
 
Sample Output
10
Hint
In the sample, there is two ways to achieve Xiaoji's goal. [6 2 8 7 1] -> [8 8 7 1] -> [8 8 8] will cost 5 + 5 = 10. [6 2 8 7 1] -> [24] will cost 20.
 
Author
SYSU
 
Source
 
Recommend
We have carefully selected several similar problems for you:   4970  4968  4967  4966  4964 
 
记忆化搜索,由于每个碎片值都是正数,所以每个前缀和后缀都是递增的,就可以利用twopointer去找到每个相等的位置,然后下一个区间相当于一个子问题,用记忆化搜索即可,复杂度接近O(n^2)
 

 

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdlib>
 4 #include<cstdio>
 5 #include<algorithm>
 6 #include<cmath>
 7 #include<queue>
 8 #include<map>
 9 
10 #define N 5005
11 #define M 15
12 #define mod 6
13 #define mod2 100000000
14 #define ll long long
15 #define maxi(a,b) (a)>(b)? (a) : (b)
16 #define mini(a,b) (a)<(b)? (a) : (b)
17 
18 using namespace std;
19 
20 int n;
21 ll v[N],sum[N];
22 int a[N],dp[N][N];
23 
24 int DP(int l,int r)
25 {
26     //int i;
27     //ll s1,s2;
28     if(dp[l][r]!=-1) return dp[l][r];
29     dp[l][r]=a[r-l+1];
30     if(l>=r) return dp[l][r]=0;
31     
32     //i=l;
33     int now=l;
34     ll re;
35     for(int i=r;i>=l;i--){
36         re=sum[r]-sum[i-1];
37         while(sum[now]-sum[l-1]<re && now<i)
38             now++;
39         if(now==i) break;
40         if(sum[now]-sum[l-1]==re){
41             dp[l][r]=min(dp[l][r],DP(now+1,i-1)+a[now-l+1]+a[r-i+1]);
42         }
43     }
44     return dp[l][r];
45 }
46 
47 int main()
48 {
49     int i;
50     //freopen("data.in","r",stdin);
51     //scanf("%d",&T);
52     //for(int cnt=1;cnt<=T;cnt++)
53     //while(T--)
54     while(scanf("%d",&n)!=EOF)
55     {
56         if(n==0) break;
57         memset(dp,-1,sizeof(dp));
58         //memset(sum,0,sizeof(sum));
59         for(i=1;i<=n;i++){
60             scanf("%I64d",&v[i]);
61             sum[i]=sum[i-1]+v[i];
62         }
63         for(i=1;i<=n;i++){
64             scanf("%d",&a[i]);
65         }
66         DP(1,n);
67         printf("%d\n",dp[1][n]);
68     }
69 
70     return 0;
71 }

 

转载于:https://www.cnblogs.com/njczy2010/p/3924538.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值