[Everyday Mathematics]20150101

本文探讨了两个函数在区间上的积分不等式,并详细解释了其证明过程及实际应用。

(1). 设 $f(x),g(x)$ 在 $[a,b]$ 上同时单调递增或单调递减, 试证: \[ (b-a)\int_a^b f(x)g(x)\mathrm{\,d}x \geq \int_a^b f(x)\mathrm{\,d}x\cdot \int_a^b g(x)\mathrm{\,d}x. \]

 

(2). 试证: \[ c\in (0,1)\Rightarrow \int_c^1 \dfrac{e^t}{t}\mathrm{\,d}t \geq e\cdot \sinh(1-c). \] 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值