Spark Streaming揭秘 Day27 Job产生机制

本文探讨了Spark Streaming中Job产生的多种途径,不仅限于DStream的action操作如print方法,还包括transform方法等特殊情况。通过transform方法可以在不遵循传统流程的情况下直接执行Job,增加了程序的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark Streaming揭秘 Day27

Job产生机制

今天主要讨论一个问题,就是除了DStream action以外,还有什么地方可以产生Job,这会有助于了解Spark Streaming的本质。

我们从一个print方法触发,来看一下常用的action操作方式:

传统流程

一般来说,产生Job需要DStream的action操作,比如print方法

第一步,在print方法中,返回了一个ForeachDStream
Snip20160618_11

第二步,在ForeachDStream中,通过被DStreamGraph调用generateJob方法,构造了运行的Job,但此时Job并未被调用。

Snip20160618_10

第三步,在JobGenerator中,执行Job中的内容。

Snip20160618_13

例外流程

是不是只有在foreachRDD之类outputDStream的操作中才能产生Job的执行? 让我们来看下transform这个方法。这个方法对当前DStream上的RDD执行某种操作,以RDD为输入,产生一个新的RDD。

请看一下这个方法中compute方法的实现:
transformFunc是构造时传进来的,这个方法在这里会执行,也就说,在这里我们可以进行任意操作,包括执行Job!!!

Snip20160618_14

也就是说,如果在调用transform方法的transformFunc里有action的操作,就会绕过上述传统流程的第三步,精简为两步来执行Job。这个方法的本意是提供一些DStream不支持的操作,但实际是个后门。

这个方法灵活性很高,可以让我们提前获得结果,这个意义是很大的,使用这个特性可以做出一些很巧妙的效果。直接调用意味着每一步都能直接获取结果,那么就可以基于前面的结果进行判断,然后进行后面的操作,比如如下操作。

lines.transform( rdd => {
      if (rdd.count > 0) {
        sqc.jsonRDD(rdd).registerTempTable("logstash")
        val sqlreport = sqc.sql("SELECT message, COUNT(message) AS host_c, AVG(lineno) AS line_a FROM logstash WHERE path = '/var/log/system.log' AND lineno > 70 GROUP BY message ORDER BY host_c DESC LIMIT 100")
        sqlreport.map(r => (r(0).toString -> Status(r(2).toString.toDouble, r(1).toString.toInt)))
      } else {
        rdd.map(l => ("" -> Status()))
      }
    })

很明显,transform中的方法内容更为丰富,这个可以突破DStream上方法都是单一职责的限制。

欲知后事如何,且听下回分解!

DT大数据每天晚上20:00YY频道现场授课频道68917580

转载于:https://www.cnblogs.com/dt-zhw/p/5596968.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值