[bzoj 5372][Pkusc2018]神仙的游戏

传送门

Description

小D和小H是两位神仙。他们经常在一起玩神仙才会玩的一些游戏,比如“口算一个4位数是不是完全平方数”。

今天他们发现了一种新的游戏:首先称s长度为len的前缀成为border当且仅当

s[1…len]=s[|s|-len+1…|s|]。

给出一个由01?组成的字符串s,将s中的问号用变成01替换,对每个len口算是否存在替换问号的方案使得s长度为len的前缀成为border,

把这个结果记做f(len)∈{0,1}。f(len)=1如果s长度为len的前缀能够成为border,否则f(len)=0

由于小D和小H是神仙,所以他们计算的s的长度很长,因此把计算的结果一一比对会花费很长的时间。为了方便比对,他们规定了一个校验值:

(f(1)12)xor(f(2)22)xor(f(3)32)xor…xor(f(n)n2)

来校验他们的答案是否相同。xor表示按位异或。

但是不巧,在某一次游戏中,他们口算出的校验值并不一样,他们希望你帮助他们来计算一个正确的校验值。

当然,他们不强迫你口算,可以编程解决。

Solution

  • 对于\(|s| \leq 1000\),直接上\(O(n^2)\)暴力即可。
  • 输入的串没有问号,发现小的\(border\)同时也是大的\(border\)\(border\),用\(KMP\)算法,直接跳\(nxt\)指针即可。
  • 数据随机,直接\(O(n^2)\)暴力就可以水过。
  • 数字的个数\(\leq 5000\),发现如果长度为\(len\)\(border\)存在,则原序列一定不存在一对\(0,1\)相距为\(n-len\),所以直接枚举数字就可以了。
  • 满分做法:两个数组,\(a[i]=[s[i]==1]\)\(b[i]=[s[n+1-i]==0]\),对这两个数组进行多项式乘法,这样如果要找是否有差距为\(k\)的一对\(0,1\),直接在\(n+1-k\)\(n+1+k\)上查询即可,\(FFT/NTT\)裸题


Code  

67pts 

#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define MN 500005
char s[MN],ss[MN];
int n,las[2][MN],num,nx[MN];
ll ans=0;
bool a[MN<<1];
inline void solve1()
{
    register int i,j;
    for(i=2,j=0;i<=n;nx[i++]=j)
    {
        while(j&&s[j+1]!=s[i]) j=nx[j];
        if(s[j+1]==s[i]) ++j;
    }
    ans=1ll*n*n;
    for(i=nx[n];i;i=nx[i]) ans^=1ll*i*i;
    printf("%lld\n",ans);
}
inline void solve2()
{
    register int i,j;
    ans=1ll*n*n;
    for(i=2;i<=n;++i)
    {
        bool fl=1;
        for(j=i;j<=n;++j)
        {
            ss[j]=s[j];
            if(j-i+1<i) ss[j-i+1]=s[j-i+1];
            if(ss[j-i+1]=='0'&&ss[j]=='1') {fl=0;break;}
            if(ss[j-i+1]=='1'&&ss[j]=='0') {fl=0;break;}
            if(ss[j-i+1]!='?'&&ss[j]=='?') ss[j]=ss[j-i+1];
        }
        if(fl) ans^=1ll*(n-i+1)*(n-i+1);
    }
    printf("%lld\n",ans);
}
int main()
{
    register int i,j,las0=0,las1=0;
    scanf("%s",s+1);n=strlen(s+1);
    for(i=1;i<=n;++i)if(s[i]!='?') num++;
    if(num==n)
    {
        solve1();
        return 0;
    }
    if(num>5000)
    {
        solve2();
        return 0;
    }
    for(i=1;i<=n;++i)if(s[i]!='?')
    {
        las[1][i]=las1;las[0][i]=las0;
        for(j=las[s[i]=='0'][i];j;j=las[s[i]=='0'][j]) a[i-j]=true;
        s[i]=='1'?las1=i:las0=i;
    }
    ans=1ll*n*n;
    for(i=1;i<=n;++i)
    {
        bool fl=1;
        for(j=i;j<n;j+=i) if(a[j]) {fl=0;break;}
        if(fl) ans^=1ll*(n-i)*(n-i);
    }
    return 0*printf("%lld\n",ans);
}



100pts 

#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define swap(x,y) (x^=y^=x^=y)
#define MN 2097152
int N,di,pos[MN];
ll a[MN],b[MN],invN;
#define mod 998244353
#define g 3
#define invg 332748118
inline ll fpow(ll x,int m){ll res=1;for(;m;m>>=1,x=x*x%mod) (m&1)?res=res*x%mod:0;return res;}
inline void NTT(ll *a,int type)
{
    register int i,j,p,k;
    for(i=0;i<N;++i)if(i<pos[i]) swap(a[i],a[pos[i]]);
    for(i=1;i<N;i<<=1)
    {
        ll wn=fpow(type>0?g:invg,(mod-1)/(i<<1));
        for(p=i<<1,j=0;j<N;j+=p) 
        {
            ll w=1;
            for(k=0;k<i;++k,w=w*wn%mod)
            {
                ll X=a[j+k],Y=w*a[j+i+k]%mod;
                a[j+k]=(X+Y)%mod;a[j+i+k]=(X-Y+mod)%mod;
            }
        }
    }
}
char s[500005];
bool d[500005];
int main()
{ 
//  freopen("1_1.in","r",stdin);
    register int n,i,j;
    scanf("%s",s+1);n=strlen(s+1);
    for(i=1;i<=n;++i) a[i]=s[i]=='1';
    for(i=1;i<=n;++i) b[i]=s[n+1-i]=='0';
    
    for(N=1;N<=n<<1;N<<=1,di++);
    for(i=0;i<N;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(di-1));
    NTT(a,1);NTT(b,1);
    for(i=0;i<N;++i) a[i]=a[i]*b[i]%mod;
    NTT(a,-1);invN=fpow(N,mod-2);
    for(i=0;i<=n<<1;++i) a[i]=a[i]*invN%mod;
    
    for(i=1;i<=n;++i) d[i]=a[n+1-i]||a[n+1+i];
    ll Ans=1ll*n*n;
    for(i=n;i>=1;--i){
        for(j=i;j<=n+1;j+=i) d[i]|=d[j];
        if(!d[i]) Ans^=1ll*(n-i)*(n-i);
    }
    printf("%lld\n",Ans);
    return 0;
}



Blog来自PaperCloud,未经允许,请勿转载,TKS!

转载于:https://www.cnblogs.com/PaperCloud/p/10243656.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值