[LeetCode] Graph Valid Tree

本文介绍了一个函数,用于检查给定的节点数和边是否构成一棵有效的树。通过深度优先搜索(DFS)方法来验证图中是否存在环,并确保所有节点都是连通的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.

For example:

Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.

Hint:

    1. Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree?
    2. According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together inedges.


As suggested by the hint, just check for cycle and connectedness in the graph. Both of these can be done via DFS.

The code is as follows.

 1 class Solution {
 2 public:
 3     bool validTree(int n, vector<pair<int, int>>& edges) {
 4         vector<vector<int>> neighbors(n);
 5         for (auto e : edges) {
 6             neighbors[e.first].push_back(e.second);
 7             neighbors[e.second].push_back(e.first);
 8         }
 9         vector<bool> visited(n, false);
10         if (hasCycle(neighbors, 0, -1, visited))
11             return false;
12         for (bool v : visited)
13             if (!v) return false; 
14         return true;
15     }
16 private:
17     bool hasCycle(vector<vector<int>>& neighbors, int kid, int parent, vector<bool>& visited) {
18         if (visited[kid]) return true;
19         visited[kid] = true;
20         for (auto neigh : neighbors[kid])
21             if (neigh != parent && hasCycle(neighbors, neigh, kid, visited))
22                 return true;
23         return false;
24     }
25 };

 

转载于:https://www.cnblogs.com/jcliBlogger/p/4738788.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值