Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2048 Accepted Submission(s): 805
题意:给出1~N的一种排列,问存在多少个三元组(x,y,z) x < z < y 其中x y z 的位置递增
可先求出满足 x < y < z 和x < z < y的总数tot, 总数为:对于每一个数 x, 从x后面的位置中比x大的num个数中选择任意两个, 即 tot += comb[ num ][2]
再从总数tot中减去 x < y < z的数量即为答案, x < y < z 的个数为: 对于一个数y, 在y的前面比 y小的个数为 low, 在y的后面比y大的个数为 high, 根据组合原理,在low中选一个x, 在high中选一个z,共有low × high中情况
如何求 每个数的low值和high值, 就用树状数组来统计
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <queue>
#include <map>
#define Lowbit(x) ((x) & (-x))
using namespace std;
typedef long long LL;
const int N = 100005;
const int M = 100000007;
int c[N], a[N];
LL low[N], high[N], comb[N][5];
int n;
void pre_c()
{
for(int i = 0; i < N; ++i)
for(int j = 0; j <= min(i,2); ++j)
comb[i][j] = (i == 0 || j == 0) ? 1:((comb[i - 1][j] % M + comb[i - 1][j - 1]) % M);
}
void update(int pos)
{
while(pos <= n) {
c[pos]++;
pos += Lowbit(pos);
}
}
LL sum(int pos)
{
LL res = 0;
while(pos) {
res += c[pos];
pos -= Lowbit(pos);
}
return res;
}
int main()
{
int _, v, cas = 1;
pre_c();
scanf("%d", &_);
while(_ --)
{
scanf("%d", &n);
memset(c, 0, sizeof c);
for(int i = 1; i <= n; ++i) {
scanf("%d", &v);
a[i] = v;
low[i] = sum(v);
update(v);
high[i] = (n - v) - (i - 1 - low[i]);
}
// for(int i = 1; i <= n; ++i) printf("%lld %lld\n", low[i], high[i]);
LL tot = 0;
for(int i = 1; i <= n; ++i) {
tot = tot % M + comb[ high[i] ][2];
tot = (tot - (low[i] % M * high[i] % M) + M) % M;
}
printf("Case #%d: %lld\n",cas++, tot % M );
}
}