潜语义分析LSA相比向量空间模型VSM改变了什么

LSA改进信息检索

向量空间模型VSM中,当查询向量query和文档向量d有共同元素时,基于内积的相似度计算sim(query,d)不为0,因此d被返回;当query和d没有共同元素时,sim(query,d)为0,则d被忽略。这样的结果是,如果d中有和query"主题相关"的的内容,那么d就被漏掉了。

潜语义分析LSA方法中,d和query都经过转换后,即使query和d没有共同元素时,经转换后的query和d的相似度sim(query,d)也不为0,则d被返回。也就是说,query和d在原来维度的空间里本来是正交的,经过转换后,投影到一个低维空间,这样十有八九就不正交了。这样的结果是,如果d中有和query"主题相关"的的内容,那么d就检索到了。但是,仅仅这样说的话就是一种想当然的说法。

转载于:https://www.cnblogs.com/kevinGaoblog/archive/2012/05/13/2498475.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值