句子相似度_tf/idf

本文介绍了使用TF-IDF和余弦相似度计算文本相似性的方法,包括如何将文本转化为向量,以及如何通过Python实现这些算法。具体展示了从文本预处理、特征提取到相似度计算的全过程。
import math
from math import isnan
import pandas as pd
#结巴分词,切开之后,有分隔符
def jieba_function(sent):
import jieba
sent1 = jieba.cut(sent)
s = []
for each in sent1:
s.append(each)
return ' '.join(str(i) for i in s)
def count_cos_similarity(vec_1, vec_2):
if len(vec_1) != len(vec_2):
return 0

s = sum(vec_1[i] * vec_2[i] for i in range(len(vec_2)))
den1 = math.sqrt(sum([pow(number, 2) for number in vec_1]))
den2 = math.sqrt(sum([pow(number, 2) for number in vec_2]))
return s / (den1 * den2)
#计算文本向量,传入文本,接受的是字符串
def tf(sent1, sent2):
from sklearn.feature_extraction.text import CountVectorizer

sent1 = jieba_function(sent1)
sent2 = jieba_function(sent2)

count_vec = CountVectorizer()

sentences = [sent1, sent2]
print('sentences',sentences)
print('vector',count_vec.fit_transform(sentences).toarray())## 输出特征向量化后的表示
print('cut_word',count_vec.get_feature_names())#输出的是切分的词, 输出向量各个维度的特征含义

#转换成维度相同的
vec_1 = count_vec.fit_transform(sentences).toarray()[0]
vec_2 = count_vec.fit_transform(sentences).toarray()[1]
similarity=count_cos_similarity(vec_1, vec_2)
if isnan(similarity):
similarity=0.0

print('count_cos_similarity',similarity)
def tfidf(sent1, sent2):
from sklearn.feature_extraction.text import TfidfVectorizer

sent1 = jieba_function(sent1)
sent2 = jieba_function(sent2)

tfidf_vec = TfidfVectorizer()

sentences = [sent1, sent2]
vec_1 = tfidf_vec.fit_transform(sentences).toarray()[0]
vec_2 = tfidf_vec.fit_transform(sentences).toarray()[1]
similarity=count_cos_similarity(vec_1, vec_2)
if isnan(similarity):
similarity=0.0
return similarity


if __name__=='__main__':

sent1 = '我喜欢看电视也喜欢看电影,'
sent2 = '我不喜欢看电视也不喜欢看电影'
print('<<<<tf<<<<<<<')
tf(sent1, sent2)
print('<<<<tfidf<<<<<<<')
tfidf(sent1, sent2)



转载于:https://www.cnblogs.com/hapyygril/p/9981864.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值