POJ 2096 Collecting Bugs(概率DP,求期望)

Collecting Bugs
Time Limit: 10000MS Memory Limit: 64000K
Total Submissions: 1244 Accepted: 523
Case Time Limit: 2000MS Special Judge

Description

Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one bug in the program and adds information about it and its category into a spreadsheet. When he finds bugs in all bug categories, he calls the program disgusting, publishes this spreadsheet on his home page, and forgets completely about the program.
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category.
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version.
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem.
Find an average time (in days of Ivan's work) required to name the program disgusting.

Input

Input file contains two integer numbers, n and s (0 < n, s <= 1 000).

Output

Output the expectation of the Ivan's working days needed to call the program disgusting, accurate to 4 digits after the decimal point.

Sample Input

1 2

Sample Output

3.0000

Source

Northeastern Europe 2004, Northern Subregion
 
 
此题是概率DP中的简单题。算是入门题吧。
题目比较难懂,多看几遍就好。
 
详解看代码中的注释。   kuangbin
 
/*
POJ 2096
概率DP
writed by kuangbin

dp求期望
逆着递推求解
题意:(题意看题目确实比较难道,n和s都要找半天才能找到)
   一个软件有s个子系统,会产生n种bug
   某人一天发现一个bug,这个bug属于一个子系统,属于一个分类
   每个bug属于某个子系统的概率是1/s,属于某种分类的概率是1/n
   问发现n种bug,每个子系统都发现bug的天数的期望。

求解:
         dp[i][j]表示已经找到i种bug,j个系统的bug,达到目标状态的天数的期望
         dp[n][s]=0;要求的答案是dp[0][0];
         dp[i][j]可以转化成以下四种状态:
              dp[i][j],发现一个bug属于已经有的i个分类和j个系统。概率为(i/n)*(j/s);
              dp[i][j+1],发现一个bug属于已有的分类,不属于已有的系统.概率为 (i/n)*(1-j/s);
              dp[i+1][j],发现一个bug属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(j/s);
              dp[i+1][j+1],发现一个bug不属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(1-j/s);
        整理便得到转移方程
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int MAXN=1010;
double dp[MAXN][MAXN];

int main()
{
    int n,s;
    while(scanf("%d%d",&n,&s)!=EOF)
    {
        dp[n][s]=0;
        for(int i=n;i>=0;i--)
          for(int j=s;j>=0;j--)
          {
              if(i==n&&j==s)continue;
              dp[i][j]=(i*(s-j)*dp[i][j+1]+(n-i)*j*dp[i+1][j]+(n-i)*(s-j)*dp[i+1][j+1]+n*s)/(n*s-i*j);
          }
        printf("%.4lf\n",dp[0][0]);//POJ上G++要改成%.4f
    }
    return 0;
}

 

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值