1734: [Usaco2005 feb]Aggressive cows 愤怒的牛

文章探讨了农民John如何通过优化牛的分配策略来最大化每头牛与其他牛之间的最小距离,避免冲突。通过使用二分搜索算法,文章详细解释了解决方案的实现过程和背后的逻辑。

1734: [Usaco2005 feb]Aggressive cows 愤怒的牛

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 217  Solved: 175
[Submit][Status][Discuss]

Description

Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

农夫 John 建造了一座很长的畜栏,它包括NN (2 <= N <= 100,000)个隔间,这些小隔间依次编号为x1,...,xN (0 <= xi <= 1,000,000,000). 但是,John的C (2 <= C <= N)头牛们并不喜欢这种布局,而且几头牛放在一个隔间里,他们就要发生争斗。为了不让牛互相伤害。John决定自己给牛分配隔间,使任意两头牛之间的最小距离尽可能的大,那么,这个最大的最小距离是什么呢

Input

* Line 1: Two space-separated integers: N and C * Lines 2..N+1: Line i+1 contains an integer stall location, xi

第一行:空格分隔的两个整数N和C

第二行---第N+1行:i+1行指出了xi的位置

Output

* Line 1: One integer: the largest minimum distance

第一行:一个整数,最大的最小值

Sample Input

5 3
1
2
8
4
9

Sample Output

3

把牛放在1,4,8这样最小距离是3

HINT

 

Source

Gold

 

题解:一道经典的二分答案题,对于可行的解的可能范围进行二分求最大合法值,然后再check函数里面采取的是 \( O\left(N \right) \) 的判断法,最坏情况下将会将整个数列跑一遍,这样一来复杂度为 \( O\left(N\log \frac{X_N-X_1}{C-1} \right) \) ,于是这样子就A掉了

实际上更好的办法是在check里面再套一个二分查找数字,实际效果将强于直接跑,复杂度 \( O\left(C\log N \log \frac{X_N-X_1}{C-1} \right) \)

 

 1 /**************************************************************
 2     Problem: 1734
 3     User: HansBug
 4     Language: Pascal
 5     Result: Accepted
 6     Time:140 ms
 7     Memory:616 kb
 8 ****************************************************************/
 9  
10 var
11    i,j,k,l,m,n,r:longint;
12    a:array[0..100000] of longint;
13 procedure sort(l,r:longint);
14           var i,j,x,y:longint;
15           begin
16                i:=l;j:=r;x:=a[(l+r) div 2];
17                repeat
18                      while a[i]<x do inc(i);
19                      while a[j]>x do dec(j);
20                      if i<=j then
21                         begin
22                              y:=a[i];a[i]:=a[j];a[j]:=y;
23                              inc(i);dec(j);
24                         end;
25                until i>j;
26                if i<r then sort(i,r);
27                if l<j then sort(l,j);
28           end;
29 function check(x:longint):boolean;
30          var i,j,k,l:longint;
31          begin
32               a[0]:=-x-1;l:=0;j:=0;
33               for i:=1 to n do
34                   begin
35                        if (a[i]-a[l])>=x then
36                           begin
37                                inc(j);
38                                if j>=m then exit(true);
39                                l:=i;
40                           end;
41                   end;
42               exit(false);
43          end;
44 begin
45      readln(n,m);
46      for i:=1 to n do readln(a[i]);
47      sort(1,n);
48      l:=0;r:=(a[n]-a[1]) div (m-1);
49      while l<r do
50            begin
51                 k:=(l+r+1) div 2;
52                 if check(k) then
53                    l:=k
54                 else
55                     r:=k-1;
56            end;
57      writeln(l);
58      readln;
59 end.     

 

转载于:https://www.cnblogs.com/HansBug/p/4409941.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值