[CareerCup] 9.3 Magic Index 魔法序号

本文介绍了一种在有序数组中查找魔法序号的算法。魔法序号是指数组中值与索引相同的元素。首先讨论了不含重复元素的情况,并给出基于二分搜索的高效解决方案。随后探讨了含有重复元素的数组,提出了一种递归方法来解决这一问题。

9.3 A magic index in an array A[0.. .n-1] is defined to be an index such that A[i] = i. Given a sorted array of distinct integers, write a method to find a magic index, if one exists, in array A.
FOLLOW UP
What if the values are not distinct?

这道题定义了一个魔法序号,就是一个数组的序号等于该位置的值的时候,这个序号就是魔法序号,给了我们一个有序数组,让我们来找魔法序号。这里brute force的方法就不提了,因为没啥考察的目的,对于高效的查找方法我们就要首先考虑二分搜索法,首先我们来看这种方法,没啥特别的地方,套用一般的二分查找法的格式即可,参见代码如下:

class Solution {
public:
    int getMagicIdx(vector<int> &nums) {
        int left = 0, right = nums.size() - 1;
        while (left <= right) {
            int mid = (left + right) / 2;
            if (nums[mid] == mid) return mid;
            else if (nums[mid] > mid) right = mid - 1;
            else left = mid + 1;
        }
        return -1;
    }
};

这道题的Follow up是说如果数组由重复项怎么处理,那么传统的二分搜索法就会失效,因为下列这种情况可能存在:

-10-522234791213
012345678910

这种情况符合题意,但是左右两边都会出现魔法序号,所以二分查找法会失效。那么我们难道又要用地毯式搜索了么,其实也不必,我们可以用一种类似于二分搜索法的递归方法来解决问题,就拿上面那个例子来说,第一次找到比较完中间点后,由于左右两边都会出现答案,所以我们左右半段要分别递归一下,这里我们可以加一个trick来优化算法,比如要递归左半段时,那么新的右边界就可以设为min(mid - 1, nums[mid]),同理递归右半段时,左边界可以设为max(mid + 1, nums[mid])。还有个小trick,就是如果左半段搜到了答案,那么直接返回即可,不用再搜右半段,因为题目让我们找一个就行了,没说要找出所有的Magic index,参见代码如下:

// Follow up
class Solution {
public:
    int getMagicIdx(vector<int> &nums) {
        return getMagicIdxDFS(nums, 0, nums.size() - 1);
    }
    int getMagicIdxDFS(vector<int> &nums, int start, int end) {
        if (end < start) return -1;
        int mid = (start + end) / 2;
        if (mid == nums[mid]) return mid;
        int left = getMagicIdxDFS(nums, start, min(mid - 1, nums[mid]));
        if (left >= 0) return left;
        int right = getMagicIdxDFS(nums, max(mid + 1, nums[mid]), end);
        return right;
    }
};

本文转自博客园Grandyang的博客,原文链接:魔法序号[CareerCup] 9.3 Magic Index ,如需转载请自行联系原博主。

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值