Lists in Prolog

本文探讨了Prolog中列表的使用,展示了其相对于重复任务的优势。通过递归操作,Prolog可以高效处理列表,无需预定义长度。文章提供了成员查找、唯一人员列表创建和列表合并的例子,并详细解释了append谓词的多功能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Symbols in Prolog:
atom
variable
number
list (how to assembly and take them apart)
 
Lists are very powerful in prolog because we do not need to do similar but repeatedtasks again and again. Instead, we can put all elements in a list and deal with them in a more general way.
 
If we have a look at the difference between lists in prolog and arrays in C, it is easy to notice that we do not need to define the length of a list in prolog. Instead, we use arecursive way to deal with them one by one until the remaining is empty.
 
How to write a list:
use commas to separate every element: [A, B]
use vertical bars to divide head and tail: [A | B]
 
The two definitions are quite different
When using [A, B], the list has only 2 element A and B.
When using [A | B], the list can have at least 1 elements because B is a list and it can be empty or very large.
 
How to operate on a list:
Define a stop condition for the recursion;
Deal with lists recursively (always divide the list by head and tail) decreasing the length of it.
 
Examples:
 
example 1: members in a list
 
elem(A, [A | _]).
elem(A, [_ | B]) :- elem(A, B).
 
If we use the following instead, it will only hold when A is the tail of the list.
elem(A, [A]).
elem(A, [_ | B]) :- elem(A, B).
 
 
example 2: list of unique people
 
uniq([ ]).
uniq([H | T]) :- people(H), \+ member(H, T), uniq(T).
 
example 3: joining two lists
 
join([ ], T, T).
join([H | T], L, [H | W]) :- join(T, L, W).
 
We can learn from these examples that we use [H | T] to take the lists into head and tail decreasing the length of it to solve our problem.
 
Using append predicate
append predicate is powerful is because it can analyze the structure of a list.
Notice that the parameter of append predicate must be lists or variables not atoms.
 
append([a, b], [c, d], L).
L=[a, b, c, d].
 
Examples:
 
L1 is start of L2:
front(L1, L2) :- append(L1, _, L2).
 
E is last element of L:
last(E, L) :- append(_, [E], L).
 
another version of member predicate:
mem(A, B) :- append(_, [A | _], B).
 
X is before Y in L:
before(X, Y, L) :- append(Z, [Y | _], L), append(_, [X | _], Z).
内容概要:本文详细介绍了如何使用STM32微控制器精确控制步进电机,涵盖了从原理到代码实现的全过程。首先,解释了步进电机的工作原理,包括定子、转子的构造及其通过脉冲信号控制转动的方式。接着,介绍了STM32的基本原理及其通过GPIO端口输出控制信号,配合驱动器芯片放大信号以驱动电机运转的方法。文中还详细描述了硬件搭建步骤,包括所需硬件的选择与连接方法。随后提供了基础控制代码示例,演示了如何通过定义控制引脚、编写延时函数和控制电机转动函数来实现步进电机的基本控制。最后,探讨了进阶优化技术,如定时器中断控制、S形或梯形加减速曲线、微步控制及DMA传输等,以提升电机运行的平稳性和精度。 适合人群:具有嵌入式系统基础知识,特别是对STM32和步进电机有一定了解的研发人员和技术爱好者。 使用场景及目标:①学习步进电机与STM32的工作原理及二者结合的具体实现方法;②掌握硬件连接技巧,确保各组件间正确通信;③理解并实践基础控制代码,实现步进电机的基本控制;④通过进阶优化技术的应用,提高电机控制性能,实现更精细和平稳的运动控制。 阅读建议:本文不仅提供了详细的理论讲解,还附带了完整的代码示例,建议读者在学习过程中动手实践,结合实际硬件进行调试,以便更好地理解和掌握步进电机的控制原理和技术细节。同时,对于进阶优化部分,可根据自身需求选择性学习,逐步提升对复杂控制系统的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值