public class UF
{
private int[] id; //分量id(以触点作为索引)
private int count; //分量数量
public UF(int N)
{
//初始化分量数组
count = N;
id = new int[N];
for (int i = 0; i < N; i++)
id[i] = i;
}
public int count()
{ return count; }
public boolean connected(int p,int q)
{ return find(p) == find(q); }
public int find(int p)
public void union(int p,int q)
public static void main(String[] args)
{
int N = StdIn.readInt(); //读取触点数量
UF uf = new UF(N); //初始化N个分量
while (!StdIn.isEmpty())
{
int p = StdIn.readInt();
int q = StdIn.readInt(); //读取整数对
if (uf.connected(p, q)) continue; //已经连通则忽略
uf.union(p, q); //归并分量
StdOut.println(p + " " + q); //打印连接
}
StdOut.println(uf.count() + "components");
}
}
quick-find算法
public int find(int p)
{ return id[p]; }
public void union(int p, int q)
{ //将p和q归并到相同的分量中
int pID = find(p);
int qID = find(q);
//p和q在相同的分量中,不采取行动
if (pID == qID) return;
//将p的分量重命名为q的名称
for (int i = 0; i < id.length; i++)
if (id[i] == pID) id[i] = qID;
count--;
}
quick-union算法
public int find(int p)
{ //找出分量的名称
while (p != id[p]) p = id[p];
return p;
}
public void union(int p, int q)
{ //将p和q的根节点统一
int pRoot = find(p);
int qRoot = find(q);
if (pRoot == qRoot) return;
id[pRoot] = qRoot;
count--;
}
加权quick-union算法
public class WeightedQuickUnionUF
{
private int[] id; //父链接数组(由触电索引)
private int[] sz; //(由触电索引的)各个根节点所对应的分量大小
private int count; //连通分量的数量
public WeightedQuickUnionUF(int N)
{
count = N;
id = new int[N];
for (int i = 0; i < N; i++) id[i] = i;
sz = new int[N];
for (int i = 0; i < N; i++) sz[i] = 1;
}
public int count()
{ return count; }
public boolean connected(int p, int q)
{ return find(p) == find(q); }
private int find(int p)
{ //跟随连接找到根节点
while (p != id[p]) p = id[p];
return p;
}
public void union(int p, int q)
{
int i = find(p);
int j = find(q);
if (i == j) return;
// 将小树的根节点连接到大树的根节点上
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
cpunt--;
}
}