题意:
有一个长度为$N$的递增序列$S_i$,要把它分成$X,Y$两组,使得$X$中元素两两之差不小于$A$且$Y$中元素两两之差不小于$B$,求方案数
首先考虑$O\left(n^2\right)$的做法:
为了方便,我们令$S_0=-\infty$
设$f_{M,i,j}(M\in\{X,Y\},1\leq i\leq n,0\leq j\lt i)$表示已划分好$S_{1\cdots i}$且$S_j$是最后一个不属于$M$的元素的方案数
已算好$f_{X,1\cdots i,j}$和$f_{Y,1\cdots i,j}$,如何转移?
①若$S_{i+1}-S_i\geq A$,$S_{i+1}$可被放入$X$中,则$f_{X,i+1,0\cdots i-1}=f_{X,i,0\cdots i-1}$
否则$S_i,S_{i+1}$不可一起被放入$X$中,$f_{X,i+1,0\cdots i-1}=0$
②显然$f_{Y,i+1,i}=\sum\limits_{j=0}^{i-1}[S_{i+1}-S_j\geq B]f_{X,i,j}$
对$f_Y$的处理相似
最后的答案就是$\sum\limits_{i=0}^{n-1}f_{X,n,i}+\sum\limits_{i=0}^{n-1}f_{Y,n,i}$
#include<stdio.h>
#define ll long long
#define mod 1000000007
int fx[2010][2010],fy[2010][2010];
ll a[2010];
int main(){
int n,i,j;
ll A,B;
scanf("%d%lld%lld",&n,&A,&B);
for(i=1;i<=n;i++)scanf("%lld",a+i);
a[0]=-4223372036854775807ll;
fx[1][0]=fy[1][0]=1;
for(i=1;i<n;i++){
if(a[i+1]-a[i]>=A){
for(j=0;j<i;j++)fx[i+1][j]=fx[i][j];
}
if(a[i+1]-a[i]>=B){
for(j=0;j<i;j++)fy[i+1][j]=fy[i][j];
}
for(j=0;j<i;j++){
if(a[i+1]-a[j]>=B)fy[i+1][i]=(fy[i+1][i]+fx[i][j])%mod;
if(a[i+1]-a[j]>=A)fx[i+1][i]=(fx[i+1][i]+fy[i][j])%mod;
}
}
j=0;
for(i=0;i<n;i++)j=((j+fx[n][i])%mod+fy[n][i])%mod;
printf("%d",j);
}
考虑优化~
首先我们肯定不能开二维数组,考虑当前DP到$S_i$,只存$f_{M,j}$,并看一看当$i$变为$i+1$对答案的影响
因为$S$是递增的,所以满足$S_{i+1}-S_j\geq B$的$S_j$一定是一段前缀,所以我们可以用二分找到右端点并用线段树求区间和
其他转移就相当于线段树的单点更新
再用lazy tag实现清零即可
#include<stdio.h>
#define ll long long
#define mod 1000000007
int sumx[400010],sumy[400010],lazx[400010],lazy[400010],*laz,*sum,n;
ll a[100010];
void pushdown(int x){
if(laz[x]){
laz[x<<1]=laz[x<<1|1]=1;
sum[x<<1]=sum[x<<1|1]=0;
laz[x]=0;
}
}
int query(int L,int R,int l,int r,int x){
if(L<=l&&r<=R)return sum[x];
pushdown(x);
int mid=(l+r)>>1,ans=0;
if(L<=mid)ans=(ans+query(L,R,l,mid,x<<1))%mod;
if(mid<R)ans=(ans+query(L,R,mid+1,r,x<<1|1))%mod;
return ans;
}
void modify(int pos,int v,int l,int r,int x){
if(l==r){
sum[x]=(sum[x]+v)%mod;
return;
}
pushdown(x);
int mid=(l+r)>>1;
if(pos<=mid)
modify(pos,v,l,mid,x<<1);
else
modify(pos,v,mid+1,r,x<<1|1);
sum[x]=(sum[x<<1]+sum[x<<1|1])%mod;
}
int queryx(int L,int R){
laz=lazx;
sum=sumx;
return query(L,R,0,n-1,1);
}
void modifyx(int pos,int v){
laz=lazx;
sum=sumx;
modify(pos,v,0,n-1,1);
}
int queryy(int L,int R){
laz=lazy;
sum=sumy;
return query(L,R,0,n-1,1);
}
void modifyy(int pos,int v){
laz=lazy;
sum=sumy;
modify(pos,v,0,n-1,1);
}
int main(){
int i,l,r,mid,x,t1,t2;
ll A,B;
scanf("%d%lld%lld",&n,&A,&B);
for(i=1;i<=n;i++)scanf("%lld",a+i);
a[0]=-4223372036854775807ll;
modifyx(0,1);
modifyy(0,1);
for(i=1;i<n;i++){
l=0;
r=i-1;
while(l<=r){
mid=(l+r)>>1;
if(a[i+1]-a[mid]>=B){
x=mid;
l=mid+1;
}else
r=mid-1;
}
t1=queryx(0,x);
l=0;
r=i-1;
while(l<=r){
mid=(l+r)>>1;
if(a[i+1]-a[mid]>=A){
x=mid;
l=mid+1;
}else
r=mid-1;
}
t2=queryy(0,x);
if(a[i+1]-a[i]<A){
sumx[1]=0;
lazx[1]=1;
}
if(a[i+1]-a[i]<B){
sumy[1]=0;
lazy[1]=1;
}
modifyy(i,t1);
modifyx(i,t2);
}
printf("%d",(queryx(0,n-1)+queryy(0,n-1))%mod);
}