【BZOJ】2125: 最短路 圆方树(静态仙人掌)

【题意】给定带边权仙人掌图,Q次询问两点间最短距离。n,m,Q<=10000

【算法】圆方树处理仙人掌问题

【题解】树上的两点间最短路问题,常用倍增求LCA解决,考虑扩展到仙人掌图。

先对仙人掌图建圆方树,圆圆边和原图边权一致。对于每个方点代表的环,记深度最小的点为x,则圆方边的边权是圆点到x的最短距离。

若lca(u,v)为圆点,则两点间最短路转化为圆方树上dis[u]+dis[v]-2*dis[lca]。(向上延伸的路径,经过环则必然经过每个方点的x,计算无误)

若lca(u,v)为方点,则记u,v在方点连接的圆点A,B的子树内,那么两点间最短路为dis[u]+dis[v]-dis[A]-dis[B]+dis(A,B),dis(A,B)是A,B在环上的短侧路径。

复杂度O(Q log n)。

实现细节:

1.Tarjan:建圆方树(先处理树边,最后在深度最小处处理环)

2.处理方点:s[i]表示点i从所在环点x(深度最小)开始逆时针的距离,最终s[x]记为s[N]后s[x]=0。另外注意要记录一下环中点的编号顺序。

3.LCA:圆点直接计算,方点中dis(A,B)=min{ s[A]+s[w]-s[B] , s[B]-s[A] }(A在B的顺时针方向,否则交换AB)。

4.注意防止访问父亲的边是i^1,初始tot=1。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=20010;
int N,fa[maxn],b[maxn],f[maxn][20],dfn[maxn],low[maxn],dfsnum=0,deep[maxn],A,B,n,m,id[maxn];
ll s[maxn],dis[maxn];
struct tu{
    int first[maxn],tot;
    struct edge{int v,w,from;}e[maxn*2];
    void insert(int u,int v,int w){
        tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;
        tot++;e[tot].v=u;e[tot].w=w;e[tot].from=first[v];first[v]=tot;
    }
}G;
int first[maxn],tot;
struct edge{int v,w,from;}e[maxn*2];
void insert(int u,int v,int w){
    tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;
    tot++;e[tot].v=u;e[tot].w=w;e[tot].from=first[v];first[v]=tot;
}
void solve(int u,int v,int w){
    N++;
    int pre=w,ID=0;
    for(int i=v;i!=fa[u];i=fa[i]){
        s[i]=pre;
        pre+=b[i];
        id[i]=ID++;
    }
    s[N]=s[u];s[u]=0;
    for(int i=v;i!=fa[u];i=fa[i])insert(N,i,min(s[i],s[N]-s[i]));
}
void tarjan(int x,int father){
    dfn[x]=low[x]=++dfsnum;
    for(int i=G.first[x];i;i=G.e[i].from)if(i!=father){
        int y=G.e[i].v;
        if(!dfn[y]){
            fa[y]=x;b[y]=G.e[i].w;
            tarjan(G.e[i].v,i^1);
            low[x]=min(low[x],low[y]);
        }else low[x]=min(low[x],dfn[y]);
        if(low[y]>dfn[x])insert(x,y,G.e[i].w);
    }
    for(int i=G.first[x];i;i=G.e[i].from){
        int y=G.e[i].v;
        if(fa[y]!=x&&dfn[y]>dfn[x])solve(x,y,G.e[i].w);
    }
}
void dfs(int x,int father){
    for(int j=1;(1<<j)<=deep[x];j++)f[x][j]=f[f[x][j-1]][j-1];
    for(int i=first[x];i;i=e[i].from)if(i!=father){
        f[e[i].v][0]=x;
        deep[e[i].v]=deep[x]+1;
        dis[e[i].v]=dis[x]+e[i].w;
        dfs(e[i].v,i^1);
    }
}
int lca(int x,int y){
    if(deep[x]<deep[y])swap(x,y);
    int d=deep[x]-deep[y];
    for(int i=0;(1<<i)<=d;i++)if(d&(1<<i))x=f[x][i];
    if(x==y)return x;
    for(int i=20;i>=0;i--)if((1<<i)<=deep[x]&&f[x][i]!=f[y][i]){
        x=f[x][i];y=f[y][i];
    }
    A=x;B=y;
    return f[x][0];
}

int main(){
    int Q;
    scanf("%d%d%d",&n,&m,&Q);
    int u,v,w;
    G.tot=1;tot=1;
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&u,&v,&w);
        G.insert(u,v,w);
    }
    N=n;tarjan(1,0);dfs(1,0);
    while(Q--){
        scanf("%d%d",&u,&v);
        w=lca(u,v);
        if(w<=n)printf("%lld\n",dis[u]+dis[v]-2*dis[w]);
        else{
            ll ans=dis[u]+dis[v]-dis[A]-dis[B];
            if(id[A]<id[B])ans+=min(s[A]+s[w]-s[B],s[B]-s[A]);
                else ans+=min(s[B]+s[w]-s[A],s[A]-s[B]);
            printf("%lld\n",ans);
        }
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/onioncyc/p/8315335.html

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值