【题目分析】
整体二分显而易见。
自己YY了一下用树状数组区间修改,区间查询的操作。
又因为一个字母调了一下午。
貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log
懒得写了。
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 50005
#define inf 0x3f3f3f3f
#define ll long long
ll n,m,cnt=0,tot=0;
struct Bit_Tree{
ll a[maxn],b[maxn];
void add(ll x,ll y,ll z)
{
// cout<<"Add "<<x<<" "<<y<<" "<<z<<endl;
for (ll i=x;i<=n;i+=i&(-i)) b[i]+=z;
for (ll i=y+1;i<=n;i+=i&(-i)) b[i]-=z;
for (ll i=x;i<=n;i+=i&(-i)) a[i]+=(n-x)*z;
for (ll i=y+1;i<=n;i+=i&(-i)) a[i]-=(n-y-1)*z;
}
void init()
{
memset(a,0,sizeof a);
memset(b,0,sizeof b);
}
ll getsum(ll x)
{
ll ret=0,tmp=0;
for (ll i=x;i;i-=i&(-i)) ret+=a[i],tmp+=b[i];
return ret-(n-x-1)*tmp;
}
ll get(ll x,ll y)
{
return getsum(y)-getsum(x-1);
}
}t;
struct data{
ll opt,id;
ll x,y,z;
}q[maxn<<1],q1[maxn<<1],q2[maxn<<1];
ll ans[maxn<<1],tag[maxn<<1];
void solve(ll ql,ll qr,ll l,ll r)
{
// cout<<"solve"<<ql<<" "<<qr<<" "<<l<<" "<<r<<endl;
// cout<<"In Que"<<endl;
if (ql>qr) return;
if (l==r)
{
for (ll i=ql;i<=qr;++i) ans[q[i].id]=l;
return ;
}
ll mid=l+r>>1,p1=0,p2=0,cnt=0;
// cout<<"Mid is "<<mid<<endl;
for (ll i=ql;i<=qr;++i)
{
// cout<<q[i].opt<<" "<<q[i].x<<" "<<q[i].y<<" "<<q[i].z<<" "<<endl;
if (q[i].opt==1)
{
if (q[i].z<=mid)
{
t.add(q[i].x,q[i].y,1);
cnt+=q[i].y-q[i].x+1;
q1[++p1]=q[i];
}
else q2[++p2]=q[i];
}
else
{
ll tmp=t.get(q[i].x,q[i].y);
// cout<<"Tmp is "<<tmp<<endl;
if (q[i].z<=tmp) q1[++p1]=q[i];
else q[i].z-=tmp,q2[++p2]=q[i];
}
}
for (ll i=1;i<=p1;++i)
{
if (q1[i].opt==1) t.add(q1[i].x,q1[i].y,-1);
q[ql+i-1]=q1[i];
}
for (ll i=1;i<=p2;++i) q[ql+p1+i-1]=q2[i];
solve(ql,ql+p1-1,l,mid);
solve(ql+p1,qr,mid+1,r);
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("wa.txt","w",stdout);
scanf("%lld",&n);
n=maxn-1;
scanf("%lld",&m);
cnt=m;
for (ll i=1;i<=m;++i)
{
scanf("%lld%lld%lld%lld",&q[i].opt,&q[i].x,&q[i].y,&q[i].z);
q[i].id=i;
if (q[i].opt==1) t.add(q[i].x,q[i].y,1);
if (q[i].opt==2)
{
tag[i]=1;
tot=t.get(q[i].x,q[i].y);
q[i].z=tot-q[i].z+1;
}
}
for (ll i=1;i<=m;++i)
if (q[i].opt==1)
t.add(q[i].x,q[i].y,-1);
solve(1,cnt,-inf,inf);
for (ll i=1;i<=m;++i)
if (tag[i])
printf("%lld\n",ans[i]);
}