Andronov-Hopf bifurcation

本文介绍安德罗诺夫-霍普分岔现象,这是一种从平衡态诞生极限环的分岔,在动力系统中当平衡态通过一对纯虚特征值改变稳定性时发生。分岔可以是超临界或亚临界,导致稳定或不稳定的极限环。

地址:http://www.scholarpedia.org/article/Andronov-Hopf_bifurcation

 

Andronov-Hopf bifurcation is the birth of a limit cycle from an equilibrium in dynamical systems generated by ODEs, when the equilibrium changes stability via a pair of purely imaginary eigenvalues. The bifurcation can be supercritical or subcritical, resulting in stable or unstable (within an invariant two-dimensional manifold) limit cycle, respectively.

Definition

Consider an autonomous system of ordinary differential equations (ODEs)

    

depending on a parameter αR , where f is smooth.

  • Suppose that for all sufficiently small |α| the system has a family of equilibria x0(α) .
  • Further assume that its Jacobian matrix A(α)=fx(x0(α),α) has one pair of complex eigenvalues
λ1,2(α)=μ(α)±iω(α)

that becomes purely imaginary when α=0 , i.e., μ(0)=0 and ω(0)=ω0>0 . Then, generically, as α passes through α=0 , the equilibrium changes stability and a unique limit cycle bifurcates from it. This bifurcation is characterized by a single bifurcation condition Re λ1,2=0 (has codimension one) and appears generically in one-parameter families of smooth ODEs.

 

 

转载于:https://www.cnblogs.com/skykill/p/7421759.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值