最大公约数和最小公倍数

本文介绍了一个程序设计问题,该程序用于计算两个正整数的最小公倍数(LCM)和最大公约数(GCD),适用于六年级学生的数学学习。输入包括多组数据,每组数据包含两个正整数,输出则对应每组数据的LCM和GCD。

Sixth Grade Math

 

Time Limit:   1000MS      Memory Limit:   65535KB
Submissions:   162      Accepted:   120

 

Description

In sixth grade, students are presented with different ways to calculate the Least Common Multiple (LCM) and the Greatest Common Factor (GCF) of two integers.   The LCM of two integers a and b is the smallest positive integer that is a multiple of both a and b.  The GCF of two non-zero integers a and b is the largest positive integer that divides both a and b without remainder. 

For this problem you will write a program that determines both the LCM and GCF for positive integers.

Input

The first line of input contains a single integer N, (1 < = N < = 1000) which is the number of data sets that follow.  Each data set consists of a single line of input containing two positive integers, a and b,  (1< = a,b  < = 1000) separated by a space.

Output

For each data set, you should generate one line of output with the following values:  The data set number as a decimal integer (start counting at one), a space, the LCM, a space, and the GCF.

Sample Input

3 
5 10 
7 23 
42 56 

Sample Output

1 10 5 
2 161 1 
3 168 14 




#include<stdio.h>
int main()
{
int n,i;
int a[1000],b[1000];
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d%d",&a[i],&b[i]);
}
for(i=1;i<=n;i++)
{
int da,xiao,yu;
if(a<b)
{
int t=a[i];
a[i]=b[i];
b[i]=t;
}
da=a[i];
xiao=b[i];
while(b[i])
{
yu=a[i]%b[i];
a[i]=b[i];
b[i]=yu;
}
printf("%d %d %d\n",i,da*xiao/a[i],a[i]);
}
return 0;
}



转载于:https://www.cnblogs.com/zou20134585/p/gongyuegongbeishu.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值