Measure Energy Impact

本文介绍如何使用工具监视iOS和OS X应用程序的能量使用情况,包括使用Xcode的调试导航仪中的能量冲击仪,以及使用能量日志分析模板监测各种因素对能耗的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测量能量的影响Measure Energy Impact

即使是小的应用程序效率低下,也会影响整个系统的寿命、性能、响应速度和温度。作为应用程序开发人员,您有义务确保应用程序尽可能高效地运行。使用工具监视应用程序的影响,以便了解它如何利用资源和识别能源使用率高的时间。使用最佳实践来提高这些领域的效率,并在没有响应用户输入的情况下,让您的应用程序绝对空闲。通过遵循Mac应用程序能效指南中推荐的指南,您可以为系统的整体能源效率和用户的满意度做出巨大贡献。Even small inefficiencies in apps add up across the system, significantly affecting battery life, performance, responsiveness, and temperature. As an app developer, you have an obligation to make sure your app runs as efficiently as possible. Use Instruments to monitor the impact of your app in order to understand how it utilizes resources and identify times when energy usage is high. Use best practices to improve efficiency in these areas, and strive for your app to be absolutely idle when not responding to user input. By adhering to the recommended guidelines in Energy Efficiency Guide for Mac Apps, you can make big contributions to the overall energy efficiency of the system and the satisfaction of your users.

开发过程中的调试能量Debug Energy During Development

调试导航仪在Xcode包括能量冲击仪(参见图23-1),它提供了能源使用的高级概述为您测试您的应用程序。在应用程序的测试周期中定期检查这个指标,评估应用程序的能量影响,并找出潜在的问题领域。如有必要,深入研究仪器进行更深入的分析。The debug navigator in Xcode includes an Energy Impact gauge (see Figure 23-1), which provides a high-level overview of energy usage as you test your app. Consult this gauge regularly throughout your app’s testing cycle to assess your app’s energy impact and identify potential problem areas up-front. If necessary, dive into Instruments for more in-depth analysis.

Figure 23-1在Xcode的能量冲击仪The Energy Impact gauge in Xcodeimage: ../Art/xcode_debug_navigator_energyimpact_gauge_2x.png

衡量iOS应用程序的能量影响Measure the Energy Impact of an iOS App

使用能量日志分析模板监视iOS设备上影响能量使用的各种因素,包括CPU活动、网络活动、屏幕亮度等。确定使用率最高的区域,看看是否能减少这些领域的影响。例如,您可能会发现有机会推迟任意选择或网络任务,直到更多的节能时间,例如当设备插上或在wi-fi上。Use the Energy Log profiling template to monitor a variety of factors that affect energy usage on an iOS device, including CPU activity, network activity, screen brightness, and more. Identify the areas where usage is highest, and see if you can reduce impact in those areas. For example, you might find opportunities to defer discretionary or network tasks until more energy efficient times, such as when the device is plugged in or on Wi-Fi.

监控iOS应用程序对能源的影响To monitor the energy impact of an iOS app
  1. 启动工具,并创建一个新的跟踪文档,该文件以能量日志分析模板为设备和应用程序设置目标。Launch Instruments, and create a new trace document that targets your device and app with the Energy Log profiling template.

    image: ../Art/instruments_energydiagnosticsprofilingtemplateandtarget_2x.png
  2. 单击“记录”按钮,或按command-r,开始记录跟踪。Click the Record button (image: ../Art/inline_record_button_2x.png), or press Command-R, to begin recording a trace.

    TIP

    为了获得最佳效果,可以考虑执行无线跟踪。这样做可以让你更精确地在电池供电、加速度计等真实场景中对设备进行配置,等等。要了解如何启用无线设备剖析,请参阅无线对象的iOS设备。For best results, consider performing the trace wirelessly. Doing so allows you to more accurately profile the device in a real-world scenario—on battery power, with accelerometers, and so on. To learn how to enable wireless device profiling, see Target an iOS Device Wirelessly.

  3. 在设备上正常使用该应用程序,同时允许收集能量数据。Use the app normally on the device, while allowing energy data to be collected.

  4. 请单击“停止”按钮,或按command-r再次,当完成。Click the Stop button (image: ../Art/inline_stop_button_2x.png), or press Command-R again, when complete.

  5. 查看收集的数据,寻找异常或意想不到的活动的尖峰或区域。然后,检查这些区域中的代码,以确定是否可以进行改进。Go through the collected data and look for spikes or areas of otherwise unusual or unexpected activity. Then, review the code in these areas to determine whether improvements can be made.

    image: ../Art/instruments_energydiagnostics_data_2x.png

TIP

能量使用日志仪指示从0到20的水平,指示您的应用程序在给定时间内使用的能量。这些数字是主观的。如果你的应用程序的能源使用水平偶尔高,并不一定意味着你的应用程序有问题。你的应用程序可能只是需要更多的能量来完成它所执行的一些任务。例如,当执行复杂的网络操作时,它可以使用GPS。这是有效的能源使用。寻找意想不到的高能量使用的尖峰或区域,或者在更优的时间内执行。The Energy Usage Log instrument indicates a level from 0 to 20, indicating how much energy your app is using at any given time. These numbers are subjective. If your app’s energy usage level is occasionally high, it doesn’t necessarily mean that your app has a problem. Your app may simply require more energy for some of the tasks it performs. For example, it may use the GPS while performing complex network operations. This is valid energy use. Look for spikes or areas of high energy use that are unexpected or that could be performed at more optimal times.

在iOS设备上直接使用日志能量Log Energy Usage Directly on an iOS Device

没有让您的设备仪器(通过无线或有线),你可以登录能源相关的数据,在正常使用情况下采取现实的测量。随着能源启用日志记录,您的iOS设备的相关数据记录能悄悄地使用时。因为日志记录效率高,所以您可以全天登录。即使设备处于休眠状态,日志记录仍在继续。但是,如果设备的电池完全排水或iOS设备断电,日志数据就会丢失。Without tethering your device to Instruments (either wirelessly or wired), you can log energy-related data under normal use in order to take realistic measurements. With energy logging enabled, your iOS device records energy-related data unobtrusively while the device is used. Because logging is efficient, you can log all day. Logging continues even while the device is in sleep mode. However, if the device’s battery drains completely or the iOS device is powered off, the log data is lost.

在iOS中记录能量数据To log energy data in iOS
  1. Go to Settings > Developer > Logging on your device.

    NOTE

    看开发商的设置,您必须提供设备的发展和它连接到你的Mac,Xcode或仪器运行。如果您的设备没有配置,请参阅配置你的Xcode项目分布和运行您的应用程序的设备上。即使设备已配置,开发商设置消失时,设备重新启动或关机。恢复设置,重新连接设备或工具Xcode。To see the Developer settings, you must provision the device for development and connect it to your Mac while Xcode or Instruments is running. If your device hasn’t been provisioned yet, see Configuring Your Xcode Project for Distribution and Launching Your App on Devices. Even after the device has been provisioned, the Developer setting disappears when the device is rebooted or powered off. To restore the setting, reconnect the device to Xcode or Instruments.

    image: ../Art/ios_settings_2x.png image: ../Art/ios_developer_2x.png
  2. 启用能量记录。Enable energy logging.

    image: ../Art/ios_logging_2x.png
  3. Tap Start Recording.

    image: ../Art/ios_logging_startrecording_2x.png
  4. Use your device normally.

  5. When you’re done, return to Settings > Developer > Logging and tap Stop Recording.

    image: ../Art/ios_logging_stoprecording_2x.png

从iOS设备导入记录的能量数据To import logged energy data from an iOS device
  1. 启动工具,并创建一个新的跟踪文档,该文件以能量日志分析模板为设备和应用程序设置目标。Launch Instruments, and create a new trace document that targets your device and app with the Energy Log profiling template.

    image: ../Art/instruments_energydiagnostics_profilingtemplate_2x.png
  2. Choose File > Import Logged Data from Device.

    image: ../Art/instruments_file_menu_importloggeddatafromdevice_menuitem_2x.png

    记录的数据被导入并显示在时间轴和明细窗格中。The logged data is imported and displayed in the timeline and detail panes.

    image: ../Art/instruments_trace_document_energyusageimported_2x.png

测量OS X应用程序的能量影响Measure the Energy Impact of an OS X App

与iOS一样,多种因素影响应用程序在OS X中的能量影响。虽然能量日志分析模板是为与iOS一起使用而设计的,但您可以使用其他分析模板来检查和评估应用程序在OS X中的能量影响。Like iOS, a variety of factors affect the energy impact of an app in OS X. Although the Energy Log profiling template is designed for use with iOS, you can use other profiling templates to examine and assess your app’s energy impact in OS X.

image: ../Art/templateActivityMonitor_48_2x.png

活动监视器。使用此剖析模板监视整个CPU、磁盘I/O和网络使用情况。Activity Monitor. Use this profiling template to monitor overall CPU, disk I/O, and network usage.

image: ../Art/templateFileActivity_48_2x.png

文件活动。使用这个剖析模板跟踪磁盘I/O活动,包括文件打开、关闭、读取和写入。File Activity. Use this profiling template to track disk I/O activity, including file opens, closes, reads, and writes.

image: ../Art/templateTimeProfiler_48_2x.png

时间剖面。使用这个分析模板来监控应用程序的活动随着时间的推移。时间分析器监视应用程序中的运行线程并定期取样。一个完整的回溯是每个样本的采集,让你深入到一个样本准确地找到代码中大量的时间都花在。Time Profiler. Use this profiling template to monitor your app’s activity over time. Time Profiler watches the running threads in your app and takes samples at regular intervals. A complete backtrace is collected for each sample, allowing you to drill down into a sample to find exactly where in your code large amounts of time are being spent.

image: ../Art/templateBlank_48_2x.png

您的自定义模板在这里。上面的模板通过分析应用程序的多个方面提供高价值,这可能会影响能量。但是,如果您希望集中在一个更具体的区域,可以在空白分析模板中添加单独的工具。如果您认为您可能需要再次执行相同类型的分析,请确定并将您的配置保存为模板。请参阅将跟踪文档保存为分析模板。Your Custom Template Here. The templates above provide high value by analyzing multiple aspects of your app, which may affect energy. If you prefer to focus in on a more specific area, however, you can add individual instruments to the Blank profiling template. If you think you might need to perform the same type of analysis again, be sure and save your configuration as a template. See Save a Trace Document as a Profiling Template.

同样,监视尖峰或高或意想不到的活动区域,看看是否可以改进这些区域以减少CPU和其他资源利用率。Again, monitor for spikes or areas of high or unexpected activity, and see whether you can improve those areas to reduce CPU and other resource utilization.

转载于:https://www.cnblogs.com/zyingn/p/Measure_Energy_Impact.html

from qiskit import QuantumCircuit, execute, Aer, transpile from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel from qiskit.aqua.components.optimizers import COBYLA from dwave.system import EmbeddingComposite, DWaveSampler import numpy as np import pandas as pd import tensorflow as tf from sklearn.svm import SVC from scipy.stats import poisson import nltk from nltk.sentiment import SentimentIntensityAnalyzer from sklearn.preprocessing import MinMaxScaler from functools import lru_cache, wraps import logging from concurrent.futures import ThreadPoolExecutor import time import warnings import psutil import pickle import sys import math # 配置日志 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger('QuantumFootballPrediction') warnings.filterwarnings('ignore', category=UserWarning) # 初始化NLP工具 try: nltk.data.find('sentiment/vader_lexicon.zip') except LookupError: nltk.download('vader_lexicon', quiet=True) sia = SentimentIntensityAnalyzer() # 添加性能监控 def performance_monitor(func): call_counts = {} @wraps(func) def wrapper(*args, **kwargs): start_time = time.perf_counter() start_mem = psutil.Process().memory_info().rss / 1024 / 1024 # MB result = func(*args, **kwargs) elapsed = time.perf_counter() - start_time end_mem = psutil.Process().memory_info().rss / 1024 / 1024 # 获取类实例 instance = args[0] if args else None logger_name = getattr(instance, 'logger', logger).name if instance else logger.name # 记录执行时间与内存 logging.getLogger(logger_name).info( f"{func.__name__}: " f"Time={elapsed:.4f}s, " f"Mem={end_mem - start_mem:.2f}MB, " f"Called={call_counts.get(func.__name__, 0) + 1} times" ) # 更新调用计数 call_counts[func.__name__] = call_counts.get(func.__name__, 0) + 1 # 量子电路特定指标 if 'quantum' in func.__name__ and isinstance(result, dict) and 'circuit' in result: circuit = result['circuit'] logging.getLogger(logger_name).debug( f"Quantum circuit depth: {circuit.depth()}, gates: {len(circuit)}" ) return result return wrapper class QuantumMatchPredictor: """量子比赛预测器 - 核心量子预测组件""" def __init__(self, n_qubits=4): self.n_qubits = n_qubits self.optimizer = COBYLA(maxiter=100) self.backend = Aer.get_backend('qasm_simulator') self.feature_map = ZZFeatureMap(n_qubits, reps=2) def build_circuit(self, features: np.ndarray) -> QuantumCircuit: """构建参数化预测线路 - 优化为O(n)复杂度""" qc = QuantumCircuit(self.n_qubits) # 特征编码层 - 使用特征值直接映射到旋转门 for i, val in enumerate(features[:self.n_qubits]): qc.ry(val * np.pi, i) # 特征值映射到[0, π]范围 # 添加特征映射层 qc.compose(self.feature_map, inplace=True) return qc @performance_monitor def predict(self, features: np.ndarray, shots=1024) -> float: """量子预测核心 - 返回主胜概率""" qc = self.build_circuit(features) # 添加测量 qc.measure_all() # 执行并返回概率 try: tqc = transpile(qc, self.backend, optimization_level=1) result = execute(tqc, self.backend, shots=shots).result() counts = result.get_counts(tqc) # 返回全1状态的概率作为主胜概率 return counts.get('1'*self.n_qubits, 0) / shots except Exception as e: logger.error(f"量子预测执行失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) class QuantumFootballPredictionModel: # 资源管理常量 MAX_QUBITS = 8 MAX_BATCH_SIZE = 8 _quantum_shots = 5000 def __init__(self, biomechanics_model_path=None): # 联赛特异性权重模板 self.league_templates = { '英超': {'体能系数': 1.3, '顺力度': 0.9, '特殊规则': '补时>5分钟时大球概率+15%'}, '意甲': {'防守强度': 1.5, '往绩克制': 1.2, '特殊规则': '平局概率基准值+8%'}, '德甲': {'主场优势': 1.4, '前锋缺阵影响': 2, '特殊规则': '半场领先最终胜率92%'}, '西甲': {'技术流修正': 1.2, '裁判影响': 0.7, '特殊规则': '强队让1.25盘口下盘率61%'} } # 量子计算资源 self.quantum_resources = self.detect_quantum_resources() logger.info(f"检测到量子资源: {self.quantum_resources}") # 量子计算后端 self.quantum_simulator = Aer.get_backend('qasm_simulator') self.dwave_sampler = None if self.quantum_resources.get('dwave', False): try: self.dwave_sampler = EmbeddingComposite(DWaveSampler()) logger.info("成功连接D-Wave量子处理器") except Exception as e: logger.warning(f"无法连接D-Wave量子处理器: {e}") # 预加载模型 self.biomechanics_model = None if biomechanics_model_path: try: self.biomechanics_model = tf.keras.models.load_model(biomechanics_model_path) logger.info("成功加载生物力学模型") except Exception as e: logger.error(f"加载生物力学模型失败: {e}") # 初始化量子匹配预测器 self.quantum_predictor = QuantumMatchPredictor(n_qubits=4) self.lstm_model = self.build_lstm_model() self._energy_cache = {} self.energy_matrix = np.array([[0.5, -0.3], [-0.3, 0.5]]) # 预计算矩阵 @property def quantum_shots(self): if self.quantum_resources.get('dwave', False): return 2000 # D-Wave系统采样更可靠,可减少次数 elif self.quantum_resources.get('ibmq', False): return 8192 # IBMQ硬件需要更多采样 else: return self._quantum_shots # 默认模拟器采样次数 def detect_quantum_resources(self): """检测可用量子计算资源""" resources = { "local_simulator": True, "ibmq": False, "dwave": False } try: from qiskit import IBMQ IBMQ.load_account() providers = IBMQ.providers() resources["ibmq"] = len(providers) > 0 except Exception as e: logger.info(f"IBM Quantum访问失败: {e}") try: from dwave.cloud import Client client = Client.from_config() if client.get_solvers(): resources["dwave"] = True client.close() except Exception as e: logger.info(f"D-Wave访问失败: {e}") return resources def build_lstm_model(self): """优化后的LSTM变盘预测模型""" model = tf.keras.Sequential([ tf.keras.layers.LSTM(128, return_sequences=True, input_shape=(60, 3)), tf.keras.layers.Dropout(0.2), tf.keras.layers.LSTM(64), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) return model # ======================== # 输入层:数据标准化 # ======================== @performance_monitor def standardize_input(self, raw_data): """数据标准化处理""" standardized = {} # 基础信息 league_weights = {'英超': 1.2, '西甲': 1.15, '意甲': 1.1, '德甲': 1.15, '法甲': 1.05} weather_weights = {'晴天': 0, '多云': -0.1, '小雨': -0.2, '大雨': -0.3, '雪': -0.4} standardized['league'] = league_weights.get(raw_data.get('league', '其他'), 1.0) standardized['weather'] = weather_weights.get(raw_data.get('weather', '晴天'), 0) standardized['pitch'] = raw_data.get('pitch_condition', 0.85) # 赛季周数(用于动态权重计算) match_week = raw_data.get('match_week', 1) standardized['match_week'] = min(max(match_week, 1), 38) # 限制在1-38周范围内 # 球队实力 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_win_rate = raw_data.get('home_win_rate', 0.5) away_win_rate = raw_data.get('away_win_rate', 0.5) home_rank_weight = 1 / max(home_rank, 1) # 防止除零 away_rank_weight = 1 / max(away_rank, 1) # 向量化计算 home_factors = np.array([home_win_rate, home_rank_weight]) away_factors = np.array([away_win_rate, away_rank_weight]) weights = np.array([0.3, 0.7]) standardized['home_strength'] = np.dot(home_factors, weights) standardized['away_strength'] = np.dot(away_factors, weights) # 保存原始胜率用于量子预测 standardized['home_win_rate'] = home_win_rate standardized['away_win_rate'] = away_win_rate # 交锋历史 historical_win_rate = raw_data.get('historical_win_rate', 0.5) historical_win_odds_rate = raw_data.get('historical_win_odds_rate', 0.5) standardized['history_advantage'] = ( 0.6 * historical_win_rate + 0.4 * historical_win_odds_rate ) # 伤停影响 injury_impact = 0 injuries = raw_data.get('injuries', {}) for position, count in injuries.items(): if position == 'forward': injury_impact -= 0.2 * count elif position == 'goalkeeper': injury_impact -= 0.3 * count elif position == 'defender': injury_impact -= 0.15 * count elif position == 'midfielder': injury_impact -= 0.1 * count standardized['injury_impact'] = min(max(injury_impact, -1.0), 0) # 限制范围 # 赛程疲劳 matches_last_7_days = raw_data.get('matches_last_7_days', 0) travel_distance = raw_data.get('travel_distance', 0) standardized['fatigue'] = min( 0.3 * min(matches_last_7_days, 4) + # 限制最多4场 0.7 * min(travel_distance / 1000, 5.0), # 限制最多5000公里 10.0 # 最大值限制 ) # 赔率数据 standardized['william_odds'] = raw_data.get('william_odds', [2.0, 3.0, 3.5]) standardized['asian_odds'] = raw_data.get('asian_odds', [0.85, 0.95, 1.0, 0.92]) # 市场热度 betfair_volume_percent = raw_data.get('betfair_volume_percent', 0.5) theoretical_probability = raw_data.get('theoretical_probability', 0.5) if theoretical_probability > 0: standardized['market_heat'] = min(max( (betfair_volume_percent - theoretical_probability) / theoretical_probability, -1.0), 1.0) # 限制在[-1,1]范围 else: standardized['market_heat'] = 0.0 # 3D姿态数据 if 'player_movement' in raw_data and self.biomechanics_model is not None: try: standardized['injury_risk'] = self.injury_risk_prediction(raw_data['player_movement']) except Exception as e: logger.error(f"伤病风险预测失败: {e}") standardized['injury_risk'] = 0.0 else: standardized['injury_risk'] = 0.0 return standardized # ======================== # 特征引擎层 # ======================== def injury_risk_prediction(self, player_movement): """3D姿态伤病预测""" asymmetry = self.calc_joint_asymmetry(player_movement) load_dist = self.weight_distribution_imbalance(player_movement) # 确保输入为二维数组 input_data = np.array([[asymmetry, load_dist]]) return self.biomechanics_model.predict(input_data, verbose=0)[0][0] def calc_joint_asymmetry(self, movement_data): """计算关节不对称性""" # 假设movement_data包含左右数据 left_side = movement_data.get('left_side', np.zeros(10)) right_side = movement_data.get('right_side', np.zeros(10)) return np.mean(np.abs(left_side - right_side)) def weight_distribution_imbalance(self, movement_data): """计算重量分布不平衡""" front_load = movement_data.get('front_load', np.zeros(10)) back_load = movement_data.get('back_load', np.zeros(10)) return np.abs(np.mean(front_load - back_load)) @performance_monitor def quantum_clustering(self, odds_matrix): """量子聚类广实区间判定""" try: # 限制特征维度 feature_dimension = min(odds_matrix.shape[1], 4) feature_map = ZZFeatureMap(feature_dimension=feature_dimension, reps=2) q_kernel = QuantumKernel(feature_map=feature_map, quantum_instance=self.quantum_simulator) return SVC(kernel=q_kernel.evaluate).fit_predict(odds_matrix) except Exception as e: logger.error(f"量子聚类失败: {e}") # 返回随机结果作为后备 return np.random.randint(0, 2, size=odds_matrix.shape[0]) def momentum_calculation(self, recent_form, history_advantage, form_continuity, odds_match, market_sentiment): """顺力度量化计算""" return min(max( 0.4 * recent_form + 0.3 * history_advantage + 0.15 * form_continuity + 0.1 * odds_match + 0.05 * market_sentiment, 0.0), 10.0) # 限制在[0,10]范围 @lru_cache(maxsize=100) def energy_balance_model(self, home_energy, away_energy, match_type): """优化后的动态能量守恒模型""" # 添加对match_type的处理 if match_type not in ['regular', 'derby', 'cup']: match_type = 'regular' # 根据比赛类型设置参数 gamma = 0.8 if match_type == 'derby' else 0.5 if match_type == 'cup' else 0.3 t = self.standardized_data.get('fatigue', 0) team_energy = np.array([home_energy, away_energy]) fatigue_vector = np.array([-gamma * t, gamma * t]) dE = np.dot(self.energy_matrix, team_energy) + fatigue_vector # 限制能量变化范围 dE[0] = min(max(dE[0], -1.0), 1.0) dE[1] = min(max(dE[1], -1.0), 1.0) return dE[0], dE[1] # ======================== # 量子优化层 # ======================== @performance_monitor def quantum_annealing_optimizer(self, prob_dist, market_data): """量子退火赔率平衡器""" # 参数校验 if not all(0 <= p <= 1 for p in prob_dist): logger.warning("概率分布值超出范围,进行归一化") total = sum(prob_dist) if total > 0: prob_dist = [p/total for p in prob_dist] else: prob_dist = [1/3, 1/3, 1/3] if self.dwave_sampler is None: logger.warning("D-Wave采样器不可用,使用经典优化") # 经典模拟退火作为后备 from scipy.optimize import minimize def objective(x): return -np.dot(prob_dist, x) # 约束条件:概率和为1 constraints = ({'type': 'eq', 'fun': lambda x: sum(x) - 1}) bounds = [(0, 1) for _ in range(3)] initial_guess = prob_dist result = minimize(objective, initial_guess, method='SLSQP', bounds=bounds, constraints=constraints) return result.x if result.success else [1/3, 1/3, 1/3] h = {0: -prob_dist[0], 1: -prob_dist[1], 2: -prob_dist[2]} J = {(0,1): market_data.get('arbitrage', 0), (0,2): -market_data.get('deviation', 0), (1,2): market_data.get('trend', 0)} try: response = self.dwave_sampler.sample_ising(h, J, num_reads=1000) sample = response.first.sample # 将样本转换为概率调整 adjusted_probs = [prob_dist[i] * (1 + 0.1 * sample[i]) for i in range(3)] # 归一化 total = sum(adjusted_probs) return [p/total for p in adjusted_probs] if total > 0 else [1/3, 1/3, 1/3] except Exception as e: logger.error(f"量子退火优化失败: {e}") return prob_dist def lstm_odds_change(self, historical_odds): """LSTM赔率变盘预测""" if historical_odds is None or len(historical_odds) < 60: logger.warning("历史赔率数据不足,使用简单平均") return np.argmax(np.mean(historical_odds, axis=0)) if historical_odds else 0 # 数据预处理 scaler = MinMaxScaler() scaled_odds = scaler.fit_transform(historical_odds) X = scaled_odds.reshape(1, scaled_odds.shape[0], scaled_odds.shape[1]) # 预测变盘方向 prediction = self.lstm_model.predict(X, verbose=0) return np.argmax(prediction) @performance_monitor def quantum_score_simulation(self, home_energy, away_energy, hist_avg): """优化后的量子蒙特卡洛比分预测""" # 使用更高效的量子比特分配方案 qc = QuantumCircuit(4) # 减少到4个量子比特以提高效率 # 主客队能量编码 theta_home = home_energy * np.pi theta_away = away_energy * np.pi # 应用旋转门 qc.ry(theta_home, 0) qc.ry(theta_away, 1) # 历史交锋影响 hist_factor = min(1.0, abs(hist_avg[0] - hist_avg[1]) * 0.5) if hist_avg[0] > hist_avg[1]: qc.crx(hist_factor * np.pi, 0, 2) else: qc.crx(hist_factor * np.pi, 1, 3) # 纠缠量子比特以增加相关性 - O(n)复杂度 for i in range(self.n_qubits - 1): qc.cx(i, i+1) # 测量 qc.measure_all() # 量子采样 backend = self.quantum_simulator try: tqc = transpile(qc, backend, optimization_level=3) job = execute(tqc, backend, shots=self.quantum_shots) result = job.result() counts = result.get_counts(tqc) except Exception as e: logger.error(f"量子比分模拟失败: {e}") return f"{round(hist_avg[0])}-{round(hist_avg[1])}" # 改进的比分解码逻辑 goal_counts = {} for state, count in counts.items(): # 前2位表示主队进球数,后2位表示客队进球数 home_goals = int(state[:2], 2) % 5 # 限制最大进球数为4 away_goals = int(state[2:], 2) % 5 # 应用泊松分布修正 home_goals = min(home_goals, 4) away_goals = min(away_goals, 4) score = f"{home_goals}-{away_goals}" goal_counts[score] = goal_counts.get(score, 0) + count # 返回出现频率最高的比分 return max(goal_counts, key=goal_counts.get) # ======================== # 动态修正层 # ======================== def apply_league_template(self, league_type, features): """应用联赛特异性模板""" template = self.league_templates.get(league_type, {}) for feature, factor in template.items(): if feature in features and isinstance(features[feature], (int, float)): features[feature] *= factor return features def enhanced_cold_warning(self, team_energy, market_data): """增强型冷门预警""" risk_score = 0 # 能量赔率偏离 fair_odds = market_data.get('fair_odds', 0.5) if abs(team_energy - fair_odds) > 0.25: risk_score += 35 # 社交媒体情绪 if market_data.get('social_sentiment', 0) > 0.65: risk_score += 20 # 主力轮换检测 training_intensity = market_data.get('training_intensity', 50) coach_tone = market_data.get('coach_tone', 'normal') if training_intensity < 45 and coach_tone == 'conservative': risk_score += 25 return min(risk_score, 100) # 上限100 def inplay_calibration(self, pre_match_pred, match_status): """修复后的滚球实时校准""" win_prob = pre_match_pred['home_win_prob'] # 领先方被压制 if 'xG_diff' in match_status and 'possession' in match_status: if match_status['xG_diff'] < -0.8 and match_status.get('score_lead', 0) == 1: win_prob -= 0.15 * (1 - match_status['possession']/100) # 红牌影响 if match_status.get('red_card', False): card_team = match_status.get('card_team', 0) # 0=主队, 1=客队 minute = match_status.get('minute', 0) time_factor = max(0, (90 - minute) / 90) if card_team == 0: # 主队红牌 win_prob -= 0.4 * time_factor else: # 客队红牌 win_prob += 0.25 * time_factor # 确保概率在[0,1]范围内 win_prob = max(0.0, min(1.0, win_prob)) # 更新预测结果 updated_pred = pre_match_pred.copy() updated_pred['home_win_prob'] = win_prob return updated_pred # ======================== # 决策输出层 # ======================== def win_probability(self, home_rating, away_rating, william_odds, return_rate=0.95, fatigue_factor=0): """修复后的胜平负概率计算""" rating_diff = (home_rating - away_rating) / 5 base_prob = 1 / (1 + np.exp(-rating_diff)) european_prob = return_rate / william_odds[0] if william_odds[0] > 0 else base_prob p_home_win = base_prob * 0.7 + european_prob * 0.3 if fatigue_factor > 2.0: away_rating_adj = away_rating * (1 - min(fatigue_factor/10, 0.3)) rating_diff_adj = (home_rating - away_rating_adj) / 5 base_prob_adj = 1 / (1 + np.exp(-rating_diff_adj)) p_home_win = base_prob_adj * 0.6 + european_prob * 0.4 # 改进的平局概率计算 draw_prob = (1 - abs(home_rating - away_rating)/10) * 0.3 # 考虑赔率中的平局概率 if len(william_odds) > 1 and william_odds[1] > 0: draw_prob = (draw_prob + return_rate/william_odds[1]) / 2 # 确保概率在合理范围内 p_home_win = min(max(p_home_win, 0.1), 0.8) draw_prob = min(max(draw_prob, 0.1), 0.5) p_away_win = 1 - p_home_win - draw_prob # 归一化处理 total = p_home_win + draw_prob + p_away_win p_home_win /= total draw_prob /= total p_away_win /= total return p_home_win, draw_prob, p_away_win # ======================== # 动态权重计算 # ======================== def calculate_dynamic_weights(self, match_week): """ 计算量子模型和传统模型的动态权重 使用公式: α(t) = 1 / (1 + exp(-k(t - t0))) 其中 t0 = 20 (赛季中段), k = 0.1 量子权重: w_q = α(t) × 0.7 + 0.3 传统权重: w_c = 1 - w_q """ t = match_week t0 = 20 # 赛季中段 k = 0.1 # 调整参数 # 计算α(t) alpha = 1 / (1 + math.exp(-k * (t - t0))) # 量子权重在0.3-1.0之间变化 w_quantum = alpha * 0.7 + 0.3 w_classic = 1 - w_quantum logger.info(f"动态权重计算: 赛季周数={t}, α={alpha:.3f}, 量子权重={w_quantum:.3f}, 传统权重={w_classic:.3f}") return w_quantum, w_classic # ======================== # 量子特征预测 # ======================== def quantum_feature_prediction(self, features: dict) -> float: """ 使用量子模型预测比赛特征 特征顺序: home_strength, away_strength, history_advantage, fatigue """ try: # 准备量子预测的特征数组 quantum_features = np.array([ features['home_strength'], features['away_strength'], features['history_advantage'], features['fatigue'] ]) # 进行量子预测 return self.quantum_predictor.predict(quantum_features) except Exception as e: logger.error(f"量子特征预测失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) # ======================== # 整合预测流程 # ======================== @performance_monitor def predict(self, raw_data): """整合预测流程 - 包含量子与传统模型动态融合""" try: # 1. 数据标准化 self.standardized_data = self.standardize_input(raw_data) league = raw_data.get('league', '英超') # 2. 应用联赛模板 self.apply_league_template(league, self.standardized_data) # 3. 计算球队能量 home_energy = self.standardized_data['home_strength'] * (1 + self.standardized_data['history_advantage']) away_energy = self.standardized_data['away_strength'] * (1 - self.standardized_data['injury_impact']) # 4. 量子比分模拟 hist_avg = raw_data.get('historical_avg_score', [1.5, 1.2]) predicted_score = self.quantum_score_simulation(home_energy, away_energy, hist_avg) # 5. 传统胜平负概率计算 william_odds = self.standardized_data['william_odds'] home_win, draw, away_win = self.win_probability( home_energy, away_energy, william_odds, fatigue_factor=self.standardized_data['fatigue'] ) # 6. 量子特征预测 quantum_prediction = self.quantum_feature_prediction({ 'home_strength': self.standardized_data['home_strength'], 'away_strength': self.standardized_data['away_strength'], 'history_advantage': self.standardized_data['history_advantage'], 'fatigue': self.standardized_data['fatigue'] }) # 7. 动态融合量子与传统预测 match_week = self.standardized_data.get('match_week', 1) w_quantum, w_classic = self.calculate_dynamic_weights(match_week) # 融合主胜概率 fused_home_win = w_quantum * quantum_prediction + w_classic * home_win # 保持相对比例不变 scale = (1 - fused_home_win) / (1 - home_win) if home_win < 1.0 else 1.0 fused_draw = draw * scale fused_away_win = away_win * scale # 归一化处理 total = fused_home_win + fused_draw + fused_away_win fused_home_win /= total fused_draw /= total fused_away_win /= total fused_probs = [fused_home_win, fused_draw, fused_away_win] # 8. 量子退火优化赔率 market_data = { 'arbitrage': raw_data.get('arbitrage_opportunity', 0.05), 'deviation': raw_data.get('odds_deviation', 0.1), 'trend': raw_data.get('market_trend', 0.0) } optimized_probs = self.quantum_annealing_optimizer(fused_probs, market_data) # 9. 冷门预警 cold_risk = self.enhanced_cold_warning(home_energy, { 'fair_odds': 1/(william_odds[0] * 1.05), 'social_sentiment': raw_data.get('social_sentiment', 0.5), 'training_intensity': raw_data.get('training_intensity', 60), 'coach_tone': raw_data.get('coach_tone', 'normal') }) # 10. 构建最终结果 result = { 'predicted_score': predicted_score, 'home_win_prob': optimized_probs[0], 'draw_prob': optimized_probs[1], 'away_win_prob': optimized_probs[2], 'cold_risk': f"{cold_risk}%", 'key_factors': { 'home_energy': home_energy, 'away_energy': away_energy, 'injury_impact': self.standardized_data['injury_impact'], 'fatigue_factor': self.standardized_data['fatigue'], 'weather_impact': self.standardized_data['weather'], 'quantum_prediction': quantum_prediction, 'w_quantum': w_quantum, 'w_classic': w_classic }, 'quantum_optimized': True if self.dwave_sampler else False } # 11. 如果有滚球数据,进行实时校准 if 'inplay_data' in raw_data: result = self.inplay_calibration(result, raw_data['inplay_data']) return result except Exception as e: logger.exception("预测过程中发生错误") return { 'error': str(e), 'fallback_prediction': self.fallback_prediction(raw_data) } def fallback_prediction(self, raw_data): """经典方法作为后备预测""" # 简单基于排名和赔率的预测 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_adv = (away_rank - home_rank) * 0.05 # 基本胜率计算 home_win = 0.4 + home_adv away_win = 0.3 - home_adv draw = 0.3 # 考虑赔率影响 if 'william_odds' in raw_data: odds = raw_data['william_odds'] implied_home = 1/odds[0] home_win = (home_win + implied_home) / 2 return { 'home_win_prob': home_win, 'draw_prob': draw, 'away_win_prob': away_win, 'predicted_score': "1-1", 'cold_risk': "30%", 'note': "经典预测方法" } # 示例使用 if __name__ == "__main__": # 创建示例数据 sample_data = { 'league': '英超', 'weather': '小雨', 'pitch_condition': 0.8, 'home_rank': 3, 'away_rank': 8, 'home_win_rate': 0.7, 'away_win_rate': 0.4, 'historical_win_rate': 0.6, 'historical_win_odds_rate': 0.55, 'injuries': {'forward': 1, 'defender': 2}, 'matches_last_7_days': 2, 'travel_distance': 800, # 公里 'william_odds': [1.8, 3.4, 4.2], 'asian_odds': [0.85, 0.95, 1.0, 0.92], 'betfair_volume_percent': 0.65, 'theoretical_probability': 0.55, 'historical_avg_score': [1.8, 1.0], 'arbitrage_opportunity': 0.03, 'odds_deviation': 0.15, 'market_trend': -0.1, 'social_sentiment': 0.7, 'training_intensity': 40, 'coach_tone': 'conservative', 'match_type': 'derby', # 比赛类型 'match_week': 5 # 赛季第5周 } # 添加3D姿态数据(简化示例) sample_data['player_movement'] = { 'left_side': np.array([0.8, 0.7, 0.9, 0.85, 0.75]), 'right_side': np.array([0.6, 0.65, 0.7, 0.8, 0.75]), 'front_load': np.array([0.5, 0.55, 0.6]), 'back_load': np.array([0.4, 0.45, 0.5]) } # 创建模型实例并预测 model = QuantumFootballPredictionModel() prediction = model.predict(sample_data) print("\n足球比赛预测结果:") print(f"预测比分: {prediction.get('predicted_score', 'N/A')}") print(f"主胜概率: {prediction.get('home_win_prob', 0):.2%}") print(f"平局概率: {prediction.get('draw_prob', 0):.2%}") print(f"客胜概率: {prediction.get('away_win_prob', 0):.2%}") print(f"量子预测值: {prediction.get('key_factors', {}).get('quantum_prediction', 0):.2%}") print(f"量子权重: {prediction.get('key_factors', {}).get('w_quantum', 0):.2f}") print(f"传统权重: {prediction.get('key_factors', {}).get('w_classic', 0):.2f}") print(f"冷门风险: {prediction.get('cold_risk', 'N/A')}") print(f"是否量子优化: {prediction.get('quantum_optimized', False)}") # 添加滚球数据示例 sample_data['inplay_data'] = { 'minute': 60, 'score': '1-0', 'possession': 45, # 主队控球率% 'xG_diff': -0.7, # 主队预期进球差 'red_card': True, 'card_team': 0 # 0=主队 } # 滚球校准 inplay_prediction = model.predict(sample_data) print("\n滚球校准后主胜概率:", f"{inplay_prediction.get('home_win_prob', 0):.2%}")
最新发布
06-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值