题目:http://community.topcoder.com/stat?c=problem_statement&pm=13239&rd=15859
用到了概率论中的贝叶斯公式,而贝叶斯公式中须要用到的概率须要用dp方法求解。
代码:
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <bitset>
#include <string>
#include <vector>
#include <stack>
#include <deque>
#include <queue>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
using namespace std;
#define CHECKTIME() printf("%.2lf\n", (double)clock() / CLOCKS_PER_SEC)
typedef pair<int, int> pii;
typedef long long llong;
typedef pair<llong, llong> pll;
#define mkp make_pair
/*************** Program Begin **********************/
const int MAX_SCORE = 50 * 50;
class FixedDiceGameDiv1 {
public:
double dp1[MAX_SCORE + 1], dp2[MAX_SCORE + 1];
// dp[i]: roll a b-sieded dice 最后总得分为i的概率
void calc(int a, int b, double dp[])
{
for (int i = 0; i < MAX_SCORE + 1; i++) {
dp[i] = 0.0;
}
dp[0] = 1.0;
for (int i = 0; i < a; i++) {
for (int j = a * b; j >= 0; j--) {
if (dp[j] == 0) {
continue;
}
for (int k = 1; k <= b; k++) {
dp[j + k] += dp[j] / b;
}
dp[j] = 0;
}
}
}
double getExpectation(int a, int b, int c, int d) {
double res = 0.0;
calc(a, b, dp1);
calc(c, d, dp2);
// 贝叶斯公式
double up = 0, down = 0;
for (int i = a; i <= a * b; i++) {
for (int j = 0; j < i; j++) {
up += dp1[i] * dp2[j] * i;
down += dp1[i] * dp2[j];
}
}
if (down == 0) {
return -1;
}
res = up / down;
return res;
}
};
/************** Program End ************************/