类似于 POJ1860 求解负权回路问题,不过考虑到图可能不连通,所以需添加一个超级节点,与各顶点的初始距离均为1000
#include
<
iostream
>
using namespace std;
int main()
{
int F, N , M, W, S, E, T;
int path[ 5300 ][ 3 ];
int dist[ 501 ];
cin >> F;
while (F -- )
{
cin >> N >> M >> W;
int size = 0 ;
for ( int i = 0 ; i < M; i ++ )
{
cin >> S >> E >> T;
path[size][ 0 ] = S;
path[size][ 1 ] = E;
path[size ++ ][ 2 ] = T;
path[size][ 0 ] = E;
path[size][ 1 ] = S;
path[size ++ ][ 2 ] = T;
}
for ( int i = 0 ; i < W; i ++ )
{
cin >> S >> E >> T;
path[size][ 0 ] = S;
path[size][ 1 ] = E;
path[size ++ ][ 2 ] = - T;
}
fill( & dist[ 0 ], & dist[N], 1000 );
bool isChanged = true ;
for ( int i = 0 ; i < N && isChanged; i ++ )
{
isChanged = false ;
for ( int j = 0 ; j < size; j ++ )
{
if (dist[path[j][ 1 ]] > dist[path[j][ 0 ]] + path[j][ 2 ])
{
dist[path[j][ 1 ]] = dist[path[j][ 0 ]] + path[j][ 2 ];
isChanged = true ;
}
}
}
cout << (isChanged ? ( " YES " ) : ( " NO " )) << endl;
}
return 0 ;
}
using namespace std;
int main()
{
int F, N , M, W, S, E, T;
int path[ 5300 ][ 3 ];
int dist[ 501 ];
cin >> F;
while (F -- )
{
cin >> N >> M >> W;
int size = 0 ;
for ( int i = 0 ; i < M; i ++ )
{
cin >> S >> E >> T;
path[size][ 0 ] = S;
path[size][ 1 ] = E;
path[size ++ ][ 2 ] = T;
path[size][ 0 ] = E;
path[size][ 1 ] = S;
path[size ++ ][ 2 ] = T;
}
for ( int i = 0 ; i < W; i ++ )
{
cin >> S >> E >> T;
path[size][ 0 ] = S;
path[size][ 1 ] = E;
path[size ++ ][ 2 ] = - T;
}
fill( & dist[ 0 ], & dist[N], 1000 );
bool isChanged = true ;
for ( int i = 0 ; i < N && isChanged; i ++ )
{
isChanged = false ;
for ( int j = 0 ; j < size; j ++ )
{
if (dist[path[j][ 1 ]] > dist[path[j][ 0 ]] + path[j][ 2 ])
{
dist[path[j][ 1 ]] = dist[path[j][ 0 ]] + path[j][ 2 ];
isChanged = true ;
}
}
}
cout << (isChanged ? ( " YES " ) : ( " NO " )) << endl;
}
return 0 ;
}