- 经典滤波器和数字滤波器
一般滤波器可以分为经典滤波器和数字滤波器。
- 经典滤波器:假定输入信号中的有用成分和希望去除的成分各自占有不同的频带。如果信号和噪声的频谱相互重迭,经典滤波器无能为力。比如 FIR 和 IIR 滤波器等。
- 现代滤波器:从含有噪声的时间序列中估计出信号的某些特征或信号本身。现代滤波器将信号和噪声都视为随机信号。包括 Wiener Filter、Kalman Filter、线性预测器、自适应滤波器等
- Z变换和差分方程
在连续系统中采用拉普拉斯变换求解微分方程,并直接定义了传递函数,成为研究系统的基本工具。在采样系统中,连续变量变成了离散量,将Laplace变换用于离散量中,就得到了Z变换。和拉氏变换一样,Z变换可用来求解差分方程,定义Z传递函数成为分析研究采样系统的基本工具。
对于一般常用的信号序列,可以直接查表找出其Z变换。相应地,也可由信号序列的Z变换查出原信号序列,从而使求取信号序列的Z变换较为简便易行。
Z变换有许多重要的性质和定理:
- 线性定理
设a,a1,a2为任意常数,连续时间函数f(t),f1(t),f2(t)的Z变换分别为F(z),F1(z),F2(z),则有$$\mathbf{Z}[af(t)]=aF(z)$$ $$ \mathbf{Z}[a_1f_1(t)+a_2f_2(t)]=a_1F_1(z)+a_2F_2(z)$$
- 滞后定理
设连续时间函数在t<0时,f(t)=0,且f(t)的Z变换为F(z),则有$$\mathbf{Z}[f(t-kT)]=z^{-k}F(z)$$
应用Z变换求解差分方程的一个例子:已知系统的差分方程表达式为$y(n)-0.9y(n-1)=0.05u(n)$,若边界条件$y(-1)=1$,求系统的完全响应。
解:方程两端取z变换$$Y(z)-0.9[z^{-1}Y(z)+y(-1)]=0.05\frac{z}{z-1}\\Y(z)=\frac{0.05z^2}{(z-1)(z-0.9)}+\frac{0.9y(-1)z}{z-0.9}$$