方差,协方差,自协方差,互协方差,自相关,互相关

本文介绍了协方差的基本概念及其在随机变量间的应用,包括协方差的定义、性质以及它如何衡量两个随机变量之间的线性关系。此外还提到了自协方差与互协方差的概念,以及它们在随机过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方差这个是什么就不说了;

协方差定义在两个随机变量上(设$E(X)=\mu$,$E(Y)=\upsilon$):

$cov(X,Y)=E[(X-\mu)(Y-\upsilon)]=E(XY)-\mu \upsilon$

若X和Y统计独立,那么协方差为0。

若随机变量为列向量,协方差为:

$cov(X,Y)=E[(X-\mu)(Y-\upsilon)^T]$

$cov(X,Y)=cov(Y,X)^T$

自协方差定义在随机过程上。如果$X_t$二阶平稳:

$\gamma(\tau)=E[(X_t-\mu)(X_{t+\tau}-\mu)]$

相应的,互协方差定义在两个随机过程上。

自相关/互相关类似于自协方差/互协方差,但不减直流。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值