POJ 3264-Balanced Lineup(段树:单点更新,间隔查询)

本文介绍了一种使用线段树解决区间最大值与最小值问题的方法,通过具体实例展示了如何构建线段树并进行高效的区间查询。适用于解决类似于USACO2007JanuarySilver中的BalancedLineup问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Balanced Lineup
Time Limit: 5000MS  Memory Limit: 65536K
Total Submissions: 34522  Accepted: 16224
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers,  N and  Q
Lines 2.. N+1: Line  i+1 contains a single integer that is the height of cow  i 
Lines  N+2.. N+ Q+1: Two integers  A and  B (1 ≤  A ≤  B ≤  N), representing the range of cows from  A to  B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source

经ysj一说我也准备噜线段树了 那天下午他来给我讲了一下线段树。先敲个模板再说。。

题意是找某个区间的最大值和最小值的差值。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <list>
#define LL long long
using namespace std;
const int INF=1<<27;
const int maxn=200010;
LL minn[maxn],maxx[maxn];
void update(LL root,LL l,LL r,LL p,LL v)//单点更新
{
	if(l==r) maxx[root]=v;minn[root]=v;
	if(l<r)
	{
		LL mid=(l+r)/2;
		if(p<=mid) update(root*2,l,mid,p,v);
		else update(root*2+1,mid+1,r,p,v);
		maxx[root]=max(maxx[root*2],maxx[root*2+1]);
		minn[root]=min(minn[root*2],minn[root*2+1]);
	}
}
LL query_min(LL root,LL l,LL r,LL ql,LL qr)
{
	LL mid=(l+r)/2,ans=INF;
	if(ql<=l&&qr>=r) return minn[root];
	if(ql<=mid) ans=min(ans,query_min(root*2,l,mid,ql,qr));
	if(qr>mid) ans=min(ans,query_min(root*2+1,mid+1,r,ql,qr));
	return ans;
}
LL query_max(LL root,LL l,LL r,LL ql,LL qr)
{
	LL mid=(l+r)/2,ans=-INF;
	if(ql<=l&&qr>=r) return maxx[root];
	if(ql<=mid) ans=max(ans,query_max(root*2,l,mid,ql,qr));
	if(qr>mid) ans=max(ans,query_max(root*2+1,mid+1,r,ql,qr));
	return ans;
}
int main()
{
  int N,Q,i,v;
  while(~scanf("%lld%lld",&N,&Q))
  {
  	for(i=1;i<=N;i++)
	{
		scanf("%lld",&v);
		update(1,1,N,i,v);
	}
	while(Q--)
	{
		int ql,qr;
		scanf("%lld%lld",&ql,&qr);
		printf("%lld\n",query_max(1,1,N,ql,qr)-query_min(1,1,N,ql,qr));
	}
  }
  return 0;
}








本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5041618.html,如需转载请自行联系原作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值