POJ3613 Cow Relays [矩阵乘法 floyd类似]

本文介绍了一种解决特定图论问题的方法:寻找通过指定数量的边连接两个点的最短路径。采用矩阵乘法及自定义运算来实现算法,并提供了一个具体的编程实现案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cow Relays
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7335 Accepted: 2878

Description

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi  ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

Input

* Line 1: Four space-separated integers: NTS, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

Output

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

Sample Input

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

Sample Output

10

Source


b在大很多也可以
求经过b条边的最短路
貌似直接想floyd不太明白了,一遍floyd怎么是经过一条边的最短路呢?
还是从矩阵乘法考虑,构造一个向量表示距离,不停乘邻接矩阵
定义一种新矩阵乘法,不是加起来而是求最小值
 
初始化时用0x3f
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=105;
typedef long long ll;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int b,n,m,s,t,u,v,w;
int mp[1005];
struct Mat{
    int a[N][N];
    Mat(){memset(a,0x3f,sizeof(a));}
}G,ans;
Mat operator *(Mat A,Mat B){
    Mat C;
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++) if(A.a[i][k])
            for(int j=1;j<=n;j++) if(B.a[k][j])
                C.a[i][j]=min(C.a[i][j],A.a[i][k]+B.a[k][j]);
    return C;
}
int main(){
    //freopen("in.txt","r",stdin);
    b=read();m=read();s=read();t=read();
    if(!mp[s]) mp[s]=++n;s=mp[s];
    if(!mp[t]) mp[t]=++n;t=mp[t];
    for(int i=1;i<=m;i++){
        w=read();u=read();v=read();
        if(!mp[u]) mp[u]=++n;u=mp[u];
        if(!mp[v]) mp[v]=++n;v=mp[v];
        G.a[u][v]=G.a[v][u]=w;
    }
    ans=G;b--;
    for(;b;b>>=1,G=G*G)
        if(b&1) ans=ans*G;
    printf("%d",ans.a[s][t]);
}

 

 
 
内容概要:本文从关键概念、核心技巧、应用场景、代码案例分析及未来发展趋势五个维度探讨了Python编程语言的进阶之路。关键概念涵盖装饰器、生成器、上下文管理器、元类和异步编程,这些概念有助于开发者突破基础认知的核心壁垒。核心技巧方面,介绍了内存优化、性能加速、代码复用和异步处理的方法,例如使用生成器处理大数据流、numba库加速计算密集型任务等。应用场景展示了Python在大数据处理、Web开发、人工智能和自动化运维等多个领域的广泛运用,特别是在FastAPI框架中构建异步API服务的实战案例,详细分析了装饰器日志记录、异步数据库查询和性能优化技巧。最后展望了Python的未来发展趋势,包括异步编程的普及、类型提示的强化、AI框架的深度整合以及多语言协同。 适合人群:已经掌握Python基础语法,希望进一步提升编程技能的开发者,特别是有意向从事数据科学、Web开发或AI相关工作的技术人员。 使用场景及目标:①掌握Python进阶概念和技术,如装饰器、生成器、异步编程等,提升代码质量和效率;②学习如何在实际项目中应用这些技术,如通过FastAPI构建高效的异步API服务;③了解Python在未来编程领域的潜在发展方向,为职业规划提供参考。 阅读建议:本文不仅提供了理论知识,还包含了丰富的实战案例,建议读者在学习过程中结合实际项目进行练习,特别是尝试构建自己的异步API服务,并通过调试代码加深理解。同时关注Python社区的发展动态,及时掌握最新的技术和工具。
内容概要:本文档《Rust系统编程实战》详细介绍了Rust在系统编程领域的应用,强调了其内存安全、零成本抽象和高性能的特点。文档分为三个主要部分:核心实战方向、典型项目案例和技术关键点。在核心实战方向中,重点讲解了unsafe编程、FFI(外部函数接口)和底层API调用,涉及操作系统组件开发、网络编程、设备驱动开发、系统工具开发和嵌入式开发等多个领域,并列出了每个方向所需的技术栈和前置知识。典型项目案例部分以Linux字符设备驱动为例,详细描述了从环境搭建到核心代码实现的具体步骤,包括使用bindgen生成Linux内核API的Rust绑定,定义设备结构体,以及实现驱动核心函数。 适合人群:对系统编程有兴趣并有一定编程基础的开发者,尤其是那些希望深入了解操作系统底层机制、网络协议栈或嵌入式系统的工程师。 使用场景及目标:①掌握Rust在不同系统编程场景下的应用,如操作系统组件开发、网络编程、设备驱动开发等;②通过实际项目(如Linux字符设备驱动)的学习,理解Rust与操作系统内核的交互逻辑;③提高对unsafe编程、FFI和底层API调用的理解和运用能力。 阅读建议:由于文档内容较为深入且涉及多个复杂概念,建议读者在学习过程中结合实际操作进行练习,特别是在尝试实现Linux字符设备驱动时,务必按照文档提供的步骤逐步进行,并多加调试和测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值