poj1269--Intersecting Lines(判断两条直线关系, 求交点)

本文详细介绍了如何通过数学方法解决两直线在平面内的交点问题,包括判断直线是否共线、平行以及如何精确求得交点坐标。使用了叉积等概念来简化判断过程,并提供了代码实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Intersecting Lines
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 13009 Accepted: 5774

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source

 
出自:http://zhan.renren.com/h5/entry/3602888498039655809

先判断两条直线是不是同线,不是的话再判断是否平行,再不是的话就只能是相交的,求出交点。

如何判断是否同线?由叉积的原理知道如果p1,p2,p3共线的话那么(p2-p1)X(p3-p1)=0。因此如果p1,p2,p3共线,p1,p2,p4共线,那么两条直线共线。direction()求叉积,叉积为0说明共线。

如何判断是否平行?由向量可以判断出两直线是否平行。如果两直线平行,那么向量p1p2、p3p4也是平等的。即((p1.x-p2.x)*(p3.y-p4.y)-(p1.y-p2.y)*(p3.x-p4.x))==0说明向量平等。

如何求出交点?这里也用到叉积的原理。假设交点为p0(x0,y0)。则有:

(p1-p0)X(p2-p0)=0

(p3-p0)X(p4-p0)=0

展开后即是

(y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0

(y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0

将x0,y0作为变量求解二元一次方程组。

假设有二元一次方程组

a1x+b1y+c1=0;

a2x+b2y+c2=0

那么

x=(c1*b2-c2*b1)/(a2*b1-a1*b2);

y=(a2*c1-a1*c2)/(a1*b2-a2*b1);

因为此处两直线不会平行,所以分母不会为0

利用叉积判两直线判相对关系; 基础都很洗脑。

#include <cmath>
#include <cstdio>
const double T = 1e-8;
struct Node{
    double x, y;
}p1, p2, p3, p4;
double ChaJi(Node a, Node b, Node c){
    return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} 
void Solve(){
    if(ChaJi(p1, p2, p3) == 0 && ChaJi(p1, p2, p4) == 0)        //共线; 
        puts("LINE");
    else if((p1.x-p2.x)*(p3.y-p4.y) == (p1.y-p2.y)*(p3.x-p4.x)) // 平行
        puts("NONE");
    else{                                                       //相交
        double a1 = p1.y-p2.y;
        double b1 = p2.x-p1.x;
        double c1 = p1.x*p2.y-p2.x*p1.y;
        double a2 = p3.y-p4.y;
        double b2 = p4.x-p3.x;
        double c2 =p3.x*p4.y-p4.x*p3.y;
        double x = (c1*b2-c2*b1)/(a2*b1-a1*b2);
        double y = (a2*c1-a1*c2)/(a1*b2-a2*b1);
        printf("POINT %.2f %.2f\n", x, y);
    } 
} 
int main(){
    int n;
    while(scanf("%d", &n) != EOF){
        printf("INTERSECTING LINES OUTPUT\n");
        while(n--){
            scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y, &p4.x, &p4.y);
            Solve(); 
        }
        printf("END OF OUTPUT\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/soTired/p/5080496.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值