R语言数据挖掘1.9.1 机器学习方法

本文介绍了几种主要的机器学习算法,包括决策树、感知器、神经网络、基于实例的学习和支持向量机。每种算法都有其独特的应用领域及优势,如支持向量机通过寻找最优超平面实现高效的分类。

1.9.1 机器学习方法


算法的主要类型均列于下方,每个算法由函数f区分。

决策树(decision tree):这种形式的f呈树形,树的每个节点都有一个关于x的函数,用来确定必须搜索哪个子节点或者哪些子节点。

感知器(perceptron):这些是应用于向量x={x1, x2, …, xn}的分量的阈值函数。对每个i=1, 2, …, n,权重wi与第i个分量相关联,且有一个阈值wixi≥θ。如果阈值满足条件,输出为+1,否则为-1。

神经网络(neural net):这些是有感知器的非循环网络,某些感知器的输出用作其他感知器的输入。

基于实例的学习(instance-based learning):此方法使用整个训练集来表示函数f。

支持向量机(support-vector machine):该类的结果是一个分类器,它对未知数据更准确。分类的目标是寻找最优超平面,通过最大化两个类的最近点之间的间隔将它们分隔。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值