HDOJ 3480 Division

本文讨论了使用动态规划(DP)解决分段最小代价问题,并通过斜率优化来提高效率。对于给定的数组,我们寻找最优的分段方式,使得每段之间的代价最小,最终达到整个数组的总代价最小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


斜率优化DP。

。。。

对数组排序后。dp【i】【j】表示对前j个物品分i段的最少代价,dp【i】【j】= min{ dp【i-1】【k】+(a【k+1】-a【j】)^2 }复杂度m*n^2      斜率优化一下就能够了。

Division

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 3008    Accepted Submission(s): 1173


Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



and the total cost of each subset is minimal.
 

Input
The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

 

Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

 

Sample Input

   
2 3 2 1 2 4 4 2 4 7 10 1
 

Sample Output

   
Case 1: 1 Case 2: 18
Hint
The answer will fit into a 32-bit signed integer.
 

Source
 




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn=11000;

int n,m;
int dp[maxn/2][maxn],a[maxn];
int q[maxn],head,tail;

int main()
{
	int T_T,cas=1;
	scanf("%d",&T_T);
	while(T_T--)
	{
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
			scanf("%d",a+i);
		sort(a+1,a+n+1);
		for(int i=1;i<=n;i++)
			dp[1][i]=(a[i]-a[1])*(a[i]-a[1]);
		for(int i=2;i<=m;i++)
		{
		    head=tail=0;
		    q[tail++]=i-1;
		    for(int j=i;j<=n;j++)
            {
                while(head+1<tail)
                {
                    int p1=q[head];
                    int p2=q[head+1];
                    int x1=a[p1+1],x2=a[p2+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    if((y2-y1)<=(x2-x1)*2*a[j]) head++;
                    else break;
                }
                int k=q[head];
                dp[i][j]=dp[i-1][k]+(a[k+1]-a[j])*(a[k+1]-a[j]);
                while(head+1<tail)
                {
                    int p1=q[tail-2],p2=q[tail-1],p3=j;
                    int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    int y3=dp[i-1][p3]+x3*x3;
                    if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2)) tail--;
                    else break;
                }
                q[tail++]=j;
            }
		}
		printf("Case %d: %d\n",cas++,dp[m][n]);
    }
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值